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Abstract—Hierarchical time series data comprises a collection
of time series aggregated at multiple levels based on categorical,
geographical, or physical constraints, the analysis of which aids
analysts across various domains like retail, finance, and energy,
in gaining valuable insights and making informed decisions.
However, existing interactive exploratory analysis approaches
for hierarchical time series data fall short in analyzing time
series across different aggregation levels and supporting more
complex analytical tasks beyond common ones like summarize
and compare. These limitations motivate us to develop a new
visual analytics approach. We first generalize a taxonomy to
delineate various tasks in hierarchical time series analysis, de-
rived from literature survey and expert interviews. Based on this
taxonomy, we develop ChronoDeck, an interactive system that
incorporates a multi-column hierarchical time series visualization
for implementing various analytical tasks and distilling insights
from the data. ChronoDeck visualizes each aggregation level of
hierarchical time series with a combination of coordinated dimen-
sionality reduction and small multiples visualizations, alongside
interactions including highlight, align, filter, and select, assisting
users in the visualization, comparison, and transformation of
hierarchical time series, as well as identifying the entities of
interest. The effectiveness of ChronoDeck is demonstrated by
case studies on three real-world datasets and expert interviews.

Index Terms—Hierarchical time series visual analysis, time
series visualization, multi-level analysis

I. INTRODUCTION

Hierarchical time series analysis refers to the analysis of
a set of time series data organized across different levels of
aggregation, reflecting various categorical, geographical, or
structural dimensions [[1]. Such analysis is widely applied in a
number of sectors like retail, finance, and energy. For instance,
a retail dataset might be structured hierarchically, with data
aggregated at the levels of state, region, individual store, and
product category. At each hierarchical level, multiple time
series capture the changes in sales figures over time.

The significance of analyzing hierarchical time series lies in
its ability to provide a nuanced and layered understanding of
the data and facilitate informed decision-making. For instance,
in the retail sector, a business analyst may examine the sales
of several stores in the same region and determine if the sales
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trends of these store aligns with the regional patterns. Such
insights are valuable for retail companies to optimize their
sales strategies and supply chain management.

Visual analytics serves as an intuitive approach to facilitate
the analysis of hierarchical time series data through interactive
interfaces. The prior studies involve such analysis can be
categorized into two types: level-by-level and multi-level anal-
ysis. The level-by-level analysis [2]]-[5] provides the analytical
support for analyzing time series in the same aggregation level
or leaf nodes, and allows users to subsequently drill down or
roll up in the hierarchy to explore time series data in other
levels. This method performs well in identifying co-occurrence
patterns or anomalies among multiple time series while falls
short in analyzing time series in different aggregation levels,
which we argue is a crucial aspect of hierarchical time
series analysis. The multi-level analysis [6]—[14] supports both
within-level analysis and cross-level analysis by visualizing
time series in multiple aggregation levels simultaneously. Nev-
ertheless, current visualization mainly focus on limited tasks
like comparing multiple time series, which is not sufficient to
satisfy diverse goals during hierarchical time series analysis.

Above limitations of existing techniques motivate us to
develop a new interactive approach, with which users are able
to combine novel hierarchical time series visualization and
interactions to perform diverse analytical tasks on both time
series in one single level and the ones distributed at different
levels. Three challenges occur in developing such a tool:

Delineating diverse analytical tasks of hierarchical time
series analysis. The scope of hierarchical time series analysis
is still unclear, existing works mainly focus on one specific
task of the analysis, such as comparing multiple time series in
the same aggregation level to identify anomalous time series.
To implement an in-depth analysis of hierarchical time series,
a well-structured task summary is critical to steer the whole
analytical process.

Visualizing the integration of hierarchical structure and
time series data. Analyzing hierarchical time series usually
involves multiple time series within or across different hierar-
chical levels. It is crucial to represent the features of many time
series effectively while maintaining awareness of hierarchical
contexts such as parent-child or sibling relationships through-
out the analytical process. Therefore, a novel and scalable
visualization approach is in need to present both aspects of
hierarchical time series.

Supporting diverse hierarchy-aware analytical tasks on
many time series. Different analytics tasks involves targets
with varied scales, ranging from single time series to multiple
sub-hierarchies. For example, business analysts would not only
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inspect one store’s sales trend, but also compare the sales
number of multiple regions and their subordinated stores.
Moreover, analysts may transform the hierarchy by grouping
similar time series, enabling more collective analysis. There-
fore, a combination of adaptive visualization and interaction
methods is needed to accommodate different scenarios.

We propose ChronoDeck, an interactive visual analytics
system to address these challenges. For the first challenge, we
conduct literature survey and interviews with domain experts,
which results in a taxonomy of analytical tasks for hierar-
chical time series. Our proposed taxonomy characterizes six
analytical tasks including summarize, compare, relate, com-
pute, rearrange, and reshape, which can be performed upon
four categories of target entities during the analysis: node,
layer, path, and tree. For the second challenge, ChronoDeck
leverages a close coordination of dimensionality reduction and
small multiples visualizations [15] for users to visualize hier-
archical time series in a multi-column layout, presenting both
an overview and details of multiple time series. Meanwhile,
linking corresponding nodes and time series visualization
in adjacent columns make it effortless for users to under-
stand the hierarchical context. Finally, for the third challenge,
ChronoDeck incorporates adaptive visualization and various
interaction methods including highlight, align, filter, and select
to accommodate diverse analytics tasks. Our contributions can
be summarized as follows:

o A task taxonomy for hierarchical time series analysis.

o An interactive visual analytics system, ChronoDeck,
which combines multi-column visualization and various
interactions to enable the integrated analysis of hierarchi-
cal time series.

o Case studies on three real-world datasets, complemented
by expert interviews, to demonstrate the effectiveness of
our method.

II. RELATED WORK

This section presents relevant studies on time series vi-
sualization, hierarchy visualization, and visual analytics for
hierarchical time series.

A. Time Series Visualization

Several surveys are conducted on the visualization of time
series. Miiller and Schumann [16] categorize existing visu-
alizations into static and dynamic representations. Fang et
al. [17] classify time attribute visualization methods into: spiral
diagram, calendar view, theme river view, dynamic visualiza-
tion, and others. Aigner et al. [[18] propose a simplified schema
of current visualization techniques based on time, data, and
visual representations. We follow the categorization of static
and dynamic representations to organize previous work.

Static representation. Most static visualization techniques
maintain a fixed representation. The line plot is the most
common and most frequently adopted visualization in many
visual analytics systems [19]-[23]. There are also variations
of the line plot such as spline chart and area chart [24].

Another important technique is calendar-based, which is
first proposed by Wijk and Selow [25]]. In this work, a combi-
nation of calendar visualization and cluster analysis method is

introduced to explore time series at different granularities. Xu
et al. [26] adopt the similar approach to summarize attributes
such as the number of faults that arise over time, and facilitate
further exploration. Also, to characterize the seasonality of
time series, the spiral diagram [27] is more often used to
visualize data in a circular structure. Notably, Tominski and
Schumann [28]] integrate two-tone pseudo coloring in the spiral
diagram to extract cyclic patterns in human infection data.
Besides, glyph-based approaches [29], [30] are employed to
summarize the characteristics of time series.

In addition, stacked graph or streamgraph are used to
visualize multiple time series. Systems such as TIARA [31]]
utilize this method to analyze the evolution of large textual
data. Meanwhile, to meet higher demands on the scalability
of the visualization, horizon chart [32]], [33]] allows users to
identify peaks and co-occurrence patterns within a limited
space, as seen in systems like CloudDet [34]] and FMLens [35].

Dynamic representation. This representation presents time
series data through a sequence of visualizations which are
considered as frames. For instance, Moere [36] utilizes a
collection of boids to visualize time-varying data like live
stock market feeds. Another typical example is Gapminder
Tools [37]], which presents animated scatter plots on a Carte-
sian coordinate system, allowing users to explore data in each
year by dragging a time slider.

Above methods primarily focus on presenting the features
of individual or multiple time series, which do not take the
structure of hierarchical time series into consideration. To
address this limitation, ChronoDeck integrates time series
visualization into a hierarchical representation, depicting tem-
poral characteristics across multiple levels of the hierarchy.

B. Hierarchy Visualization

There are a number of studies which propose various rep-
resentations for hierarchy visualization. Schulz [38] refers to
hierarchy visualization as tree visualization and puts forward
treevis.net project which gathers a collection of prior tree
visualizations. In his study, hierarchy visualization is classified
into three categories, namely explicit, implicit and hybrid,
based on edge representations.

Explicit representation. Visualizations in this category, of-
ten referred to as node-link layouts, have explicit edge repre-
sentations to encode hierarchical relationships. Among many
existing works, Munzner et al. [[39] propose TreeJuxtaposer,
a system enabling comparison between large trees through
a novel focus+context interface combined with guaranteed
visibility. Lee et al. [40] develop an interactive visualization
named TreePlus, which enables exploration of a large graph
by expanding nodes within node-link layouts. To enhance
the space efficiency of node-link layouts, Yan and Ma [41]]
propose an elastic tree layout, which dynamically adjusts
the visualization, allowing for the presentation of detailed
information and hierarchical context.

Implicit representation. Unlike node-link layout, visualiza-
tions such as Icicle Plots [42]] and Treemaps [43]], [44] use an
implicit representations of edges. To address the suboptimal
aspect ratios often found in the rectangular layouts and use
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space more compactly, circular variants such as Sunburst [45]],
InterRing [46], and Circular Treemaps [47] are introduced.
More recently, Zhao and Lu [48]] propose Variational Circular
Treemap which supports users in navigating different levels of
the hierarchical dataset with the assistance of focus+context
techniques. Gortler et al. [49] propose Bubble Treemaps,
which utilizes a circle-packing layout to display hierarchical
data and incorporate uncertainty information into the visualiza-
tion. Jin et al. [SO] propose Radial Icicle Tree which keeps area
consistent for nodes of the same size, and enhances visibility
with inserted gaps between adjacent nodes.

Hybrid representation. There are visualizations which com-
bine both explicit and implicit representation of the hierarchy.
Viégas et al. [51]] propose Google+Ripples which integrates
node-link diagrams into Circular Treemaps to visualize sharing
behaviors in social networks. Li et al. [52] develop a visual-
ization called ClockTree which organizes nodes in a circular
layout based on depth-first search, alongside arcs depicting
relationships between nodes.

Prior hierarchy visualization techniques effectively encode
parent-child relationships but overlook the temporal attributes
of nodes within the hierarchy, limiting their ability to cohe-
sively analyze both structural and temporal aspects of hier-
archical time series. ChronoDeck uses a multi-column layout
to represent multiple aggregation levels of hierarchical time
series, enabling the integration of numerous time series while
supporting diverse analytical tasks.

C. Visual Analytics for Hierarchical Time Series

Visual analytics is frequently used to analyze hierarchical
time series. Existing approaches can be categorized as: level-
by-level analysis and multi-level analysis.

Level-by-level analysis. The methods which fall into this
category analyze time series data in single aggregation level or
leaf nodes, adopting operations like drill-down and roll-up to
update current aggregation level and corresponding visualiza-
tion. Hao et al. [2] propose a method to analyze multiple time
series in the same aggregation level within a space-fill layout,
where time series are visualized based on importance relations.
Meanwhile, tree is the most intuitive representation when it
comes to visualize and analyze hierarchical data. Burch et
al. [3] propose Timeline trees where timeline visualization
is put next to a node-link diagram, users can easily expand
or collapse the hierarchy to explore different levels. Also,
Fischer et al. [4] propose ClockMap which is based on
circular treemap consisting of glyph-based visualization of
time series. ClockMap utilizes semantic zooming for users
to explore data at diverse granularities. Besides, Janetzko et
al. [5]] combine treemap and various time series visualization
to assist anomaly detection of power consumption data with
hierarchical structure. The major drawback of above approach
is that only one aggregation level or leaf nodes of hierarchical
time series is visualized, which falls short in analyzing time
series at different aggregation levels.

Multi-level analysis. This category of methods enable both
within-level and cross-level analysis by simultaneously vi-
sualizing multiple levels of hierarchical time series. Ziegler

et al. [6] use a table-based visualization to analyze multiple
sector data and their aggregates in the stock market. Burch
and Weiskopf [7] propose TimeEdgeTrees, which overlays
timeline visualization onto the edges of an orthogonal tree
diagram. With this visualization, users can implement compar-
ison among time series across all levels. However, this method
lacks support for necessary analytics goals, such as grouping
multiple time series with common features and finding sub-
hierarchies with similar behaviors, especially when the scale
of the hierarchy grows larger. Another line of research uses
stacked graphs [9], [11]], [12] or streamgraphs [8]I, [1O], [[13]],
[14] to visualize multiple series within a hierarchical structure.
Nevertheless, it may cause confusion in inspecting the trend
of single time series and it is hard to manipulate the hierarchy
to accommodate diverse analytical tasks.

Existing methods for hierarchical time series analysis can
only achieve a limited number of tasks, whereas ChronoDeck
leverages the combination of dimension reduction and small
multiples visualizations in a multi-column layout, alongside
interactions including highlight, align, filter, and select, to
support six analytical tasks we have outlined in Sec. [[II-C

III. TAXONOMY

The analysis of hierarchical time series requires the imple-
mentation of various tasks, so to extract meaningful patterns
and derive valuable insights. However, previous studies are
confined to simple tasks like summarize and compare, leaving
the scope of such analysis unexplored. In order to better guide
the whole analytical process, it is essential to establish a
systematic collection of tasks involved in hierarchical time
series analysis. In this section, we present a task taxonomy for
hierarchical time series analysis. We introduce six analytical
tasks and categorize the targets these tasks act upon within the
hierarchical structure as four entities.

A. Methodology

We adopt a combination of literature survey and interviews
with ten experts to develop a task taxonomy for hierarchi-
cal time series analysis. The analysis of hierarchical time
series is utilized in diverse domains. Therefore, we invite
ten experts from representative domains, including energy
digitalization (E ), business analytics (&5 7), cloud comput-
ing (s 4), urban computing (Es59), machine learning (Ey),
and e-commerce (F1g). All experts have at least 2 years of
experience with analyzing hierarchical time series.

The study process consists of two phases. In the first phase,
we produce a draft taxonomy through literature survey and
expert interviews. We start by searching for papers in academic
databases and digital libraries, including Google Scholar,
IEEE Xplore, ACM Digital Library, and ResearchGate, using
keywords “hierarchical time series”, “tree”, “hierarchy”, “time
series”, “visualization”, “visual analytics” and their boolean
combinations. We expand our selection by leveraging ref-
erence lists from initial papers through a snowballing ap-
proach [53]]. Papers are included if they present visual analytics
approaches for hierarchical time series that conform to Hynd-
man et al.’s definition [1]], where lower-level series aggregate to
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Fig. 1. The taxonomy demonstrates the categorization of targeted entities and general tasks of hierarchical time series analysis. ChronoDeck is implemented
based on this taxonomy. (A) ChronoDeck visualizes dimensionality reduction results as scatter plots to summarize features of entities across multiple aggregation
levels. (B) ChronoDeck utilizes both dimensionality reduction and time series visualizations to implement the task of compare. (C) Similarity measures are
used to relate other similar entities. (D) The tasks of compute is classified into aggregate and derive. (E) ChronoDeck supports rearranging nodes, while does
not support rearranging layers. (F) The task of reshape modifies hierarchical time series by creating/deleting layers and merging/splitting trees.

form higher-level series based on categorical, geographical, or
physical constraints. After applying this criteria, we finalize
15 relevant papers. Based on gathered papers, we assemble
a collective list of recurring and common tasks, which are
grouped according to shared analytical goals, operations, and
usage contexts. We generalize three initial analytical tasks in
this process: summarize, compare, and compute.

Due to the limited number of papers, we conduct informal
interviews with ten experts over a two-month period, allowing
for open-ended discussion and brainstorming. Each interview
is conducted via online meetings with experts from a single
domain and lasts approximately 45 minutes. Every expert
participates in at least three interview sessions. The interview
process consists of three distinct stages. The initial discussions
focus on understanding the basic structure and attributes of
the datasets. Subsequently, experts demonstrate their general
workflow live using their analytical tools. The final stage
involves breaking down the workflow into specific tasks.
Building upon the initial tasks identified from the literature,
we leverage insights from expert interviews to contribute addi-
tional scenarios to existing categories, group similar operations
within each category, refine task definitions, adjust boundaries,
and further generalize three additional analytical tasks: relate,
rearrange, and reshape.

Following the task abstraction model proposed by Mun-
zner [54], we structure our initial taxonomy around two
dimensions: entity and task. The entity denotes the targets of
analysis, while the rask represents the analytical actions taken.
Based on the tasks generalized earlier, we identify specific
targets these tasks act upon within the analytical scenarios
mentioned in relevant literature and expert interviews, and
categorize them based on their structural characteristics into:
node, layer, path, and tree.

Afterwards, we proceed to the second phase, where we
present the initial taxonomy to all experts for further optimiza-
tion and validation. We first introduce the definition of each
entity and task, alongside specific scenarios to the experts.
Then, experts offer suggestions and validation on both general

structure of the taxonomy and contents in specific category.
Finally, based on their feedback, we revise the taxonomy and
produce the final version. The study is approved by the State
Key Lab of CAD&CG, Zhejiang University.

B. Entity Categorization

In this section, we first describe the basic structure of
hierarchical time series. Building on this understanding, we
then demonstrate our categorization of entities.

In hierarchical time series, data is organized in a tree-
like structure, with each level of the tree representing a
level of aggregation. To illustrate the concept of hierarchical
time series, we utilize examples from retail and photovoltaic
datasets, which are provided by domain experts. The retail
dataset forms a hierarchical structure with different levels
of aggregation: state, region, store, and product type. Each
node within this hierarchy encapsulates time series data,
documenting the progression of daily sales figures. In the retail
hierarchy, the data at a parent node represents the aggregate of
its child nodes’ data. For instance, sales data associated with
a particular region is the sum of all its subordinated stores.
The photovoltaic dataset exhibits a three-level hierarchical
structure comprising transformer, inverter, and string. In a PV
field, multiple strings are organized into groups, with each
group connected to a single inverter, and multiple inverters
are further clustered under a single transformer. Based on this
nested nature, a hierarchical time series can be constructed by
cumulating current measurements from bottom up. Datasets
with similar structures can also be observed in other domains
like clouding computing, business analytics, urban computing,
and many others. Based on this structure, we categorize the
targets of hierarchical time series analysis into four types of
entities: node, layer, path, and tree.

E1: Node. This entity refers to the individual elements
@  within the hierarchy, providing the most detailed level
of information available. Examples include the daily sales
data for an individual store, the current measurement for a
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single PV string, or the performance monitoring data of one
particular server in the data center.

E2: Layer. We define layer as a set of nodes that share
@ @ the same parent within the hierarchy. It encodes the
characteristics of multiple time series in one aggregation level.
This could be, for example, sales data of all stores in the same
region, current data for several strings connected to the same
inverter, or prices of multiple stocks under one sector.

E3: Path. Extending the concept from graph theory
‘. [55], in hierarchical time series, a path represents a
sequence of linked nodes from one level of the hierarchy to
another, highlighting relationships between different aggrega-
tion levels. For example, a path might consist of data linked
between a store and its corresponding region, reflecting how
individual sales trends correlate with regional trends.

E4: Tree. The hierarchy itself or its sub-hierarchies can

be represented by trees. It contains multiple time series
at different aggregation levels. In the retail dataset, a simple
tree can be the sales data of one region and its subordinated
stores. For the photovoltaic dataset, the cumulative current
measurement at one inverter and current data of each string
connected to it can also be represented by a tree.

C. Task Summary

We generalize six analytical tasks: summarize, compare,
relate, compute, rearrange, and reshape, which refer to an-
alytical actions taken upon entities mentioned above during
the analysis of hierarchical time series. Each analytical task is
introduced as follows.

EI T1: Summarize. This task (Fig. [T]A) refers to presenting
© an overview of a whole set of potentially targeted enti-
ties [56]. Burch et al. [3]] summarizes the features of multiple
nodes by placing thumbnail visualizations next to the leaf
nodes of the hierarchy representation. Fischer et al. [4] utilizes
multiple circular glyphs to present a general summary. Few
prior researches focus on summarizing features across different
aggregation levels. Nevertheless, domain experts present us the
necessity of summarizing the characteristics of more than one
aggregation level. For example, in the regular maintenance
of a photovoltaic field, the analysis of strings needs to be
combined with the summoned conditions at inverter-level.
Therefore, an effective summary of paths contribute to the
efficient identification of an anomalous combination of an
inverter and a PV string. Meanwhile, in cloud computing, the
overall performance of one single data center can not com-
prehensively uncover the performance of each server inside.
Summarizing both data centers and their subordinated servers
aids users in locating one specific sub-hierarchy for further
analysis. By visualizing a collection of entities based on their
characteristics, users can seamlessly proceed with downstream
tasks such as compare.
% T2: Compare. This task involves comparing the charac-
teristics of two or more entities to uncover similarities
and differences (Fig. [IB). Most prior studies concentrate on
the comparison of nodes and layers. For nodes, Ziegler et
al. [|6] compare sector data across multiple countries using
a table-based layout. And Cuenca et al. [§] enables the

comparison between genres and sub-genres by adopting a
multi-resolution approach. For layers, Janetzko et al [5] com-
pare multiple collections of time series in a treemap-based
visualization. However, insights from domain experts suggest
that comparisons among other entities are equally important.
For example, the user may want to compare not only the
sales data of two regions, but also the sales data of their
subordinated stores, which can be abstracted as a comparison
between trees. Additionally, comparison between paths is also
common. For instance, comparing the correlation between the
prices of different stocks and the corresponding sectors can
help users identify stocks with abnormal behaviors.

T3: Relate. Once an entity of interest is located, this

task seeks out other entities with similar attributes by
employing similarity measures and search algorithms tailored
for different entities (Fig. [[IC). The task is particularly useful
when analyzing hierarchical time series with a large scale. The
simplest example is when a user identifies a node exhibiting
abnormal behavior, the relate action can efficiently find other
nodes in the hierarchy with similar behavior. This approach
can be also extended to other entities. For instance, photo-
voltaic experts tend to locate a single high-cumulative-current
inverter paired with a dysfunctional string with low current
measurement. These anomalous strings are often hindered by
the high cumulative current values of their associated inverters.
Experts can effectively find such strings by searching for sim-
ilar paths through the action of relate. In retail data analysis,
analysts often search for regions with similar sales conditions
to formulate better business strategies. These regions not only
exhibit overall similar characteristics but also have stores
with comparable feature distributions. To achieve this, analysts
often relate relevant trees.
T4: Compute. This task refers to conducting compu-

=) tation on single or multiple time series, and can be

divided into two sub-categories: aggregate (Fig. [ID1) and
derive (Fig. [ID2). (1) Aggregate. This sub-category involves
using aggregation functions like max, min, average, and sum,
etc. to turn multiple time series into single time series. (2)
Derive. This sub-category focuses on transforming single time
series into one single value, a new time series or multiple
new time series. For example, deriving one single value may
involve calculating the average current measurement of one PV
string, or obtaining the ratio of change for one stock over a
period of time. Deriving a new time series typically includes
transformation operations like smoothing, normalization and
anomaly detection. Specifically, in stock market analysis,
history data for each stock is usually normalized for trend
comparison. In cloud computing, anomaly detection methods
are applied to the performance data of each server, generating a
new time series where each timestamp is assigned an anomaly
score [34]. Deriving multiple time series can be splitting single
time series into multiple slices based on seasonality or trend.
In the field of urban computing, Deng et al. [57]] partition
time series into multiple segments based on periodicity or peak
identification, and analyze causal relations in each segment.
T5: Rearrange. This task refers to changing the se-
quence of nodes and layers. The most common one is
rearranging nodes in each layer by sorting methods (Fig. [TE1).

—
—O
—
—
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The sorting can be based on various metrics: the average
value of single time series, the overall anomaly score, etc.
For example, stock market data can be sorted by the aver-
age difference between adjacent prices which indicates the
volatility of one stock or sector. The arrangement can be also
based on the meta information of time series. In analyzing the
retail dataset, analysts tend to bring together the sales data of
stores which are geographically close during the analysis. The
rearrangement of layers is also regularly seen in the analysis of
the retail dataset, whose hierarchical time series is constructed
upon multidimensional data. Users can organize the sequence
of dimensions to accommodate various analytical purposes. As
an instance, users can analyze the sales of different product
types in single store by putting store above product type, or
explore the sales of one specific product type in multiple stores
by reversing the previous sequence (Fig. [IE2).
"A‘ T6: Reshape. This task refers to operations which mod-
ify the structural semantics of the hierarchy. Two major
operations are summarized under this task: (1) Create/Delete
layers. The operation of creating layers usually takes place
when the user analyzes a large number of nodes in the
same layer. Additional layer is added upon the current layer,
consisting of nodes which is the aggregation of previous
nodes with similar characteristics. In the field of photovoltaic,
multiple PV strings which merge into one single inverter
may demonstrate different features, maintenance personnel
often groups similar string data to analyze major features
(Fig.[TF1). Another example can be utilizing the result of time
series partitioning to create layers underneath the current layer,
which is often employed to analyze time series with cyclical
patterns (Fig. [F1). The operation of deleting layers is often
adopted when dealing with a large number of aggregation
levels. For example, the sales datasets from large corporate
possess additional levels, including store type, product type
and product version. Analysts usually remove irrelevant layers
to simplify the analytical process. (2) Merge/Split trees. In
stock market analysis, market analysts often group multiple
sectors in the same industrial chain, for example, Information
Technology and Communication Services, to analyze all stocks
below (Fig. [TF2). Conversely, users may also choose to split
grouped trees and focus on analyzing a single tree.
Justification. The analytical tasks defined by our task
taxonomy primarily aim for analyzing multiple time series in
a hierarchical structure with different aggregation levels. We
choose not to include the identify task mentioned in previous
studies [54]], [56], as it mainly targets at analyzing the features
of a single time series. Also, the functionality of the identify
task has already been integrated with our existing tasks to
a certain extent. The analytical tasks, including summarize,
compare, relate, and rearrange, can be leveraged to identify
specific targets with particular attributes. For example, to
identify the store with the lowest sales, users can rearrange
stores based on average sales values, effectively locating the
target without requiring a separate identify task.

IV. CHRONODECK

We present ChronoDeck, an interactive visual analytics
system to facilitate the analysis of hierarchical time series. In

developing such a tool, we work closely with domain experts
(F3_g) and generalize four design goals (see Sec[IV-A) under
the guidance of the nested model for visualization design and
validation proposed by Munzner [58]]. Based on the design
goals, we further develop ChronoDeck consisting of three
views: data, exploration, and selection views (Fig. E]A-C). With
ChronoDeck, users can visualize, transform hierarchical time
series, and compare different entities in a multi-column layout
through coordinated visualization and diverse interactions, and
further identify entities-of-interest in the hierarchy. In this
section, we first introduce our design goals, then elaborate
the visual design and interactions of ChronoDeck for in-depth
analysis of hierarchical time series.

A. Design Goals

G1: Visualize hierarchical time series. Hierarchical time
series consists of both structural and temporal features. The
design should integrate visual representations of hierarchical
structure and time series data, and provide users with a
summary of time series across different levels (Eg summarize).

G2: Support comparison among different entities. The
design should facilitate efficient derivation of similarities and
differences among different entities. It should also support
detailed comparisons, allowing users to dissect relationships
among entities consisting of multiple time series (B4 compare).

G3: Enable transformation of hierarchical time series.
Given the extensive number of time series within the hierarchy,
users should be able to rearrange nodes in one aggregation
level based on various criteria (= rearrange). Also, the design
should support operations like creating layers and merging
trees (8 reshape). Additionally, various computation methods
should be embedded (] compute) in the system to facilitate
the transformation of hierarchical time series.

G4: Facilitate identification of entities-of-interest. The
design should enable users to identify entities-of-interest dur-
ing the exploration process. Moreover, it should allow users
to correlate other entities in the hierarchy that share common
characteristics based on similarity measures ((® relate).

In the following four subsections, we introduce design
features to support the above design goals.

B. Visualization of Hierarchical Time Series &

This section illustrates how ChronoDeck employs a multi-
column layout to visualize hierarchical time series, providing
both a visual summary across different aggregation levels and
details of multiple time series. We also introduce the visual
design for emphasizing the currently explored hierarchy.

Multi-column layout. Inspired by the column view in
macOS®’s Finder, ChronoDeck adopts a multi-column layout
to integrate hierarchical structure and time series features. This
layout visualizes each aggregation level in one column, with
multiple columns aligned to display the hierarchy (Fig. 2B).
Each column consists of two components: a scatter plot and
small multiples visualizations of time series. To provide a
visual summary for each level, we employ t-SNE [59], a robust
dimensionality reduction technique, to convert time series at
the current level into two-dimensional coordinates. They are
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visualized as scatter plots above each column, encoding key
features of time series as positions in the plot and enabling
easy identification of clusters (Fig. 2B4). Although the results
of t-SNE, such as orientation, may change for different random
seeds, the algorithm preserves the local neighborhood structure
that is critical for discovering patterns or clusters among
multiple time series and ensuring the consistency of repeated
analysis. Below each scatter plot, small multiples visualiza-
tions detail individual time series. Users can brush specific
intervals and update the visualization for further examination.

Progressive exploration. ChronoDeck enables incremental
adjustment of the visualization to explore different parts of
the hierarchy. Users can unfold or fold corresponding sub-
hierarchies by clicking specific time series visualizations. To
emphasize users’ exploration of hierarchical time series, we
utilize opacity to distinguish three categories of nodes within
the hierarchy as follows (Fig. 2B): (1) Unfolded & Bottom
nodes: Either unfolded with their children displayed in the
next column, or the deepest leaf nodes within the currently
explored hierarchy. (2) Folded nodes: Within the currently
explored hierarchy, but their children are not displayed in
deeper levels. (3) Context nodes: Not within the currently
explored hierarchy. In scatter plots, three categories of nodes
are assigned with opacity of 100%, 30%, and 10%. Moreover,
they are placed in top, middle, and bottom layers to emphasize
the currently explored hierarchy while maintaining the overall
context. In time series visualizations, context nodes are not
visualized, while the first two categories are assigned with
opacity of 100% and 30%. Two sets of links in yellow and
grey are used to connect visualizations in both scatter plots and
small multiples with parent-child relationships. Additionally,
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Fig. 2. The user interface of ChronoDeck. (A) The data view presents the basic information of hierarchical time series. (B) The exploration view visualizes
hierarchical time series in a multi-column layout, where users are able to compare different entities and transform hierarchical time series through various
interactions. (C) The selection view displays selected entities and allows users relate similar entities within the hierarchy.
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Fig. 3. Design alternatives for hierarchical time series visualization. (A) An
explicit node-link layout, integrating circular-glyph-based visualization. (B)
A juxtaposed layout which aligns time series visualization with a linearized
tree. (C) A treemap-based visualization. (D) Our multi-column visualization.

coordination between scatter plots and time series visualiza-
tions allows users to hover over time series visualizations to
examine corresponding circles in scatter plots.

Justification. Our design mainly centers around incorpo-
rating time series representation into hierarchy visualization.
Schulz [38] classifies hierarchy visualization into explicit,
implicit and hybrid based on edge representations. We present
design alternatives which belong to the first two categories,
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as hybrid representations are rarely used. We first consider
an explicit node-link layout to depict the hierarchical struc-
ture, where each node was represented by a circular glyph,
illustrating the characteristics of time series data (Fig. BJA).
However, this approach has scalability issues, particularly
with a large number of time series. Another visualization
we consider is similar to Timeline tress [3] which visualizes
the hierarchy using an explicit node-link layout and positions
time series visualization next to the corresponding node.
We further utilized the tree linearization technique [60] to
make time series across all aggregation levels be visualized
along the same vertical axis (Fig. BB). Nevertheless, users
have to constantly switch between two visualizations, which
causes a high cognitive load. We then develop a treemap-
based approach which conserves space and allows for detailed
inspection of individual time series (Fig. [BC). The drawback
of this approach is that time series in different aggregation
levels have different proportions, making them hard to com-
pare. With above limitations considered, we finally propose a
more scalable and compact visualization with a multi-column
layout (Fig. [3D). The parent-children relationship is explicitly
encoded using links between adjacent columns.

C. Comparison Among Different Entities A

Compare is a critical task in hierarchical time series analy-
sis. Based on the visual comparison action categories proposed
by Gleicher [|61]], we utilize linked scatter plots for identifying
and summarizing relationships (similarities and differences)
among entities, and facilitates the dissection of relationships
by examining details in time series visualization.

The linked scatter plots on the top of columns offer an
efficient approach to compare all four entities. Users can
identify similarities or differences among multiple nodes or
layers based on the distribution of circles in a single scatter
plot. Comparison of paths and trees is enabled by examining
distances among node-link layouts across different aggregation
levels in multiple linked scatter plots. Additionally, Chron-
oDeck introduces the interaction of highlight. When the folded
nodes are hovered over in the time series visualization, corre-
sponding sub-hierarchy is temporarily highlighted in the linked
scatter plots and can be compared with the currently explored
hierarchy, which is temporarily rendered at lower opacity for
visual differentiation (Fig. @B1). This interaction aids users
with a preview for deciding the subsequent operations, such
as expanding the hovered node and comparing details in the
time series visualization.

The time series visualization supports more detailed com-
parison. Based on the study conducted by Javed et al. [62],
to compare multiple time series within the hierarchy, Chron-
oDeck employs small multiples visualizations, complemented
by shared-space approaches. In each column, entities in the
same level (e.g. nodes and layers) are visualized separately and
can be configured to different charts including line plot, area
chart and horizon chart for juxtapose comparison (Fig. 2B3).
Line plots allow users to click the time bar above small
multiples for overlapped comparison (Fig. dA1).

To compare time series across different levels, ChronoDeck
introduces the interactions of select and align. Users can select

relevant entities in the selection view for further examination
by right-clicking the time series visualization. For example,
nodes from different levels can be selected for direct com-
parison by listing vertically in the selection view (Fig. 2C1).
The align interaction addresses horizon misalignment between
parent-child nodes and enhances entity distinction. Clicking
the alignment button above each column aligns subsequent
time series relative to the chosen level, facilitating explicit
comparison between paths and trees (Fig. 4B2).

Justification. Gleicher et al. [63] categorize visual compar-
ison designs into three fundamental approaches: juxtaposition,
superposition, and explicit encoding. For comparing node-
link layouts in linked scatter plots, we employ superposition
methods, as juxtaposition methods can present scalability
issues, and explicit encoding is rarely utilized in this context.
Meanwhile, for time series comparison, we primarily utilize
small multiples visualization, a juxtapose design, due to its
advantages in comparing time series across different levels
and interacting with individual time series visualization.

D. Transformation of Hierarchical Time Series = @&

The transformation of hierarchical time series involves two
main aspects: rearrange and reshape hierarchical time series.

Rearrange hierarchical time series. ChronoDeck allows
users to rearrange hierarchical time series by modifying the
sequence of nodes at each aggregation level. This can be
achieved in two ways. First, users can sort nodes within a level
by clicking buttons at the top of each column, based on criteria
such as the average value or the ratio of change. Second,
ChronoDeck leverages the result of dimension reduction to
rearrange nodes for exploratory analysis. Users can drag a
time series to the first position as a reference, and the system
would reorder the other nodes, based on their distance from
the reference in the scatter plot (Fig. 2B2). Additionally, users
can utilize the lasso tool in scatter plots to filter time series.

Reshape hierarchical time series. In ChronoDeck, there
are two main operations: creating layers and merging trees.

To reshape the hierarchy by creating layers, users can group
time series with similar characteristics by adding a new layer
upon the current one. Within each new layer, time series for
each node is automatically calculated from its children time
series in the grouped layer, adopting aggregation computations
like average or sum. To maintain the consistency of the
overall hierarchical structure, ChronoDeck groups all time
series in the same aggregation level and creates multiple new
layers which form additional aggregation level. This operation
is implemented by first locating an aggregation level, and
assigning a cluster number based on the t-SNE layout, which
is optimized for distinguishing clusters. Users then can click
on the grouping button on top of the current column, using
K-Means to group time series. Subsequently, a new column
visualization is added to the left of current column as an
additional level. In this newly created column, the coordinate
of each circle in the scatter plot is the centroid of its grouped
circles (Fig. [2B5), and each time series is visualized using the
average trend of its children time series by default.

Besides grouping similar time series, users can also create
layers to facilitate analyzing time series with seasonal patterns.
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By double-clicking time series visualization, ChronoDeck au-
tomatically partitions all time series in the current level and
utilizes the partitioning results to create new layers in the
subsequent column (Fig. PB8).

Meanwhile, the operation of merging trees enables users to
collectively analyze sub-hierarchies with similar characteris-
tics. To merge two currently explored sub-hierarchies, users
can simply click the merge button on top of each column. As
a result, the root node of the merged tree will be the average
series of the previous two in default, while descendants are
inserted under the newly created root node.

Justification. Aghabozorgi et al. [[64] generalize three ways
to cluster time series: model-based, feature-based, and shape-
based. In the process of creating layers, we adopt the feature-
based approach due to its close integration with our visual
design, with which users first identify clusters in the scatter
plots representing time series features, and then apply the K-
Means algorithm to group similar time series. We opt for
K-Means clustering because it enables users to determine K
based on the observed distribution in scatter plots and make
iterative adjustments to refine the clustering results. In con-
trast, automatic approaches such as DBSCAN [65] may yield
suboptimal results and offer limited space for adjustments.

E. Identification of Entities-of-Interest

During the analysis process, users can right-click the time
series visualization to select relevant entities for further exam-
ination in the selection view (Fig. 2IC1). Each selected entity
is then displayed within a corresponding card in the selection
view. Users have the option to refine these entities by editing
out less significant features, such as removing less important
nodes in a path card.

However, simply selecting entities from the exploration
view is not enough for users to identify all potential entities-
of-interest. To address this, users can click on the search
button to relate other entities in the hierarchy which share
common characteristics with the current entity based on sim-
ilarity measures. After correlating multiple candidates, the
corresponding entity cards will be displayed below the current
card (Fig. [2C2). We provide similarity measures for each
category of entities. We employ the Euclidean distance to
measure the similarity between each pair of nodes. For layers,
we utilize the Hungarian method [66] to match nodes from
two distinct layers using Euclidean distance. Subsequently,
the average distance between each matched pair of nodes is
calculated to represent the overall similarity between layers.
This approach is applied to measure the similarity between
paths or trees. We first normalize each time series for a given
node pair if there are scale variations at different aggregation
levels, then we compute the average distance between each
node pair. For trees spanning more than two levels, we adopt
the same approach recursively.

Justification. Numerous methods exist for quantifying sim-
ilarity between time series [[67]. We choose Euclidean distance
because it is the most common approach to measure time series
similarity. Given that matched time series share identical time
ranges, Euclidean distance is suitable for assessing similarity
for temporal characteristics like trends and seasonality.

V. IMPLEMENTATION

We implement ChronoDeck from two modules: frontend
and backend. In the frontend, we use JavaScript, alongside
libraries like Vuejs, Vuex, and D3 [68] to construct the
interactive visualization. We build our backend server based
on Python and Flask, while using libraries like numpy and
sklearn to realize algorithms including dimension reduction,
clustering and entity search. Our dataset contains the meta
information and hierarchical time series data. The meta in-
formation documents the basic attributes of each node and
hierarchical time series data is stored inside a nested folder in
the format of json file. Finally, we open source our system at
https://github.com/ChronoDeck/ChronoDeck.

VI. EVALUATION

In this section, we evaluate the effectiveness of ChronoDeck
through case studies on three real-world datasets with domain
experts, complemented by expert interviews to collect their
feedback. The evaluation demonstrates ChronoDeck’s capabil-
ities in implementing diverse analytical tasks on hierarchical
time series.

A. Method

Participants and data. Domain experts E,, Ep, and F,
participate in our case studies. E, is specialized in the fields
of urban computing, and familiar with air quality and travel
data analysis. Ej, has expertise in energy digitalization, and E,
possesses extensive experience in stock market assessment. All
three experts are not involved in the design of the system.
We use three datasets in case studies: the tourism dataset,
the photovoltaic dataset and the stock market dataset. (1)
The tourism dataset. This dataset [69] consists of quarterly
tourism volumes data in Australia between 1998 to 2017,
aggregated at country, state, and region levels. Holiday and vis-
iting purposes are selected because they represent the majority
of traveling activity. (2) The photovoltaic dataset. The dataset
provided by FEj has three aggregation levels: transformer,
inverter, and string. Within the hierarchical time series, there
are multiple inverters belong to a single transformer, and each
inverter is incorporated with multiple grouped strings. The
time series documents the current measurements summoned
from string level in four months on a daily basis. (3) The stock
market dataset. This dataset is obtained by Yahoo Finance
API, documenting the daily history data of the stock market
in March 2023. The hierarchical time series also has three ag-
gregation levels: index, sector, and stock. we choose S&P500
as the index, and 11 sectors including Energy, Information
Technology, Utilities, etc. Within each sector, there are stocks
for each company like Apple, Microsoft, and Tesla. For each
time series, Adj Close is suggested by I, as our main metric,
because it represents the most accurate performance of stocks.

Study protocol. In case studies, each expert spontaneously
uses ChronoDeck to analyze the assigned dataset by per-
forming various analytical tasks, while following the think
aloud protocol [70]. The study is conducted using the Chrome
browser on a 3840 x 2160 display and we document the whole
analytical process. The study is approved by the State Key Lab
of CAD&CG, Zhejiang University.
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Fig. 4. The process of analyzing the photovoltaic dataset. (A) Distinguish inverters with different cumulative current values and analyze anomalous strings
under low-cumulative-current inverters. (B) Analyze anomalous lines under high-cumulative-current inverters. (C) Select an entity-of-interest, and relate paths
consisting of time series representing a high-cumulative-current inverter and a low-current PV string.

B. Case 1: Analyzing the Tourism Dataset

FE, intends to analyze the seasonality of tourism volumes
in different geographical scales. To highlight seasonal peaks,
E, extracts the seasonal component from all time series using
STL decomposition and applies z-normalization to mitigate
scale differences (2] compute). Also, he configures the default
line plot into horizon chart for enhanced visualization.

Analyze the tourism volumes of states under Australia
(G2-3). Focusing on recent data, F, selects the period since
2010, quickly identifying seasonal peaks in the first quarter
across Australia. E, then expands the hierarchy to the state-
level. E, finds New South Wales state, similar to Australia,
reaches its peak in the first quarter (Fig. 2B1). By dragging
New South Wales to the top and clicking the anchor button,
the rest of states are reordered based on their distances to New
South Wales in the scatter plot (Fig. 2) (= rearrange). E,
discovers two states: Northern Territory and Queensland, with
peaks in the third quarter, which is different from the pattern
found in New South Wales (B compare).

Analyze the tourism volumes of regions under different
states (G1-4). E, subsequently unfolds regions underneath
these two states. The regions under Northern Territory are
grouped within one single cluster in the scatter plot (Eg sum-
marize), demonstrating peaks in the third quarter. While for
regions under Queensland, E, identifies two distinct clusters
in the scatter plot (Fig. 2B4) (E& summarize, Z4 compare).
Therefore, he reshapes the hierarchy by creating new layers in
the Group_Region column, grouping time series with similar
patterns (Fig. [2BS) (@) reshape, compute). E, aligns
the time series visualization to the Group_Region column
to facilitate the comparison between two sub-hierarchies (B
compare). Within two groups, one group containing regions
such as Gold Coast and Sunshine Coast presents tourism

peaks in the first and fourth quarter because of favorable
weather conditions and holiday seasons (Fig. 2B6), while the
other group mostly peaks in the second and third quarters
due to optimal climate for outdoor exploration (Fig. 2JB7). To
analyze individual region, E, double-clicks node like Outback,
presenting eight partitioned yearly time series in the newly
created column (Fig. 8) (@2 reshape, compute).
Afterwards, E, right-clicks the time series visualization
to select nodes from the State and Group_Region columns,
comparing time series from different levels on the right selec-
tion panel (Fig. 1) (B4 compare). He also selects Sunshine
Coast and clicks the search button to relate similar ones like
Experience Perth within the hierarchy (Fig. 2IC2) (D relate).

C. Case 2: Analyzing the Photovoltaic Dataset

The analytical goal for Ej is to identify PV strings with
low current values. Since the cumulative current of inverters
reflects the general state of their connected strings, and strings
under the same inverter typically exhibit similar attributes, Fj
wants to leverage the hierarchical structure of the PV system to
first identify inverters with distinct features and then drill down
into specific strings for effective fault detection and diagnosis.

Distinguish inverters with different cumulative current
values (G3). F first identifies a period where the variance
of cumulative current values among inverters is relatively
large by inspecting the overlapped line plots (Fig. fAL).
E), thus brushes this interval for further analysis. Ej sorts
inverters based on the average current values (= rearrange,
compute), noting that the four bottom-left circles represent
inverters with the minimal current values (Fig. fjA2).

Analyze anomalous strings under low-cumulative-
current inverters (G1-3). E;, unfolds these four inverters
to analyze PV strings underneath. In the String column, a
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large number of circles is observed on the left side (Eg
summarize). Therefore, F, adopts lasso to select this collection
of circles (Fig.[#A3) and groups similar strings by creating new
layers in the Group_String column (Fig. |4 4) (@2 reshape,
compute). In the newly created column, two distinct clusters
can be observed. Further investigation reveals that four circles
on the left are grouped by strings with the lowest current
values (Eg summarize, B4 compare). So E}, adopts lasso again
to filter out the right cluster (Fig. [@A5). At this point, E,
has selected four inverters with the lowest cumulative current
values, each contains one string group, consisting a number of
PV strings with extremely low current values. Next, E} aligns
the visualization to the Group_String column, and discovers
that Inverter 4 has eight anomalous strings while the others
only own three or four such strings (B4 compare). E, later
examines the information of these strings on the construction
drawings and finds that the corresponding solar panels have
suboptimal installation angles, resulting in little radiation being
received, which causes abnormal behaviors of the PV strings.

Analyze anomalous strings under high-cumulative-
current inverters (G2, G4). E, retains Inverter 4 and its
corresponding node-link layout for potential comparison. By
highlighting sub-hierarchies under inverters with high cumu-
lative current values, F, finds that one of Inverter 8’s children
circles in the Group_String column is close to the existing
circle, which stands for a string group with low current values
(Fig. EIBI) (B4 compare). E, subsequently expands Inverter
8 and discovers an anomalous string group consisting of two
strings with very low current values (Fig. [@B2). Unlike the
low-value PV strings under low-cumulative-current inverters,
anomalous strings like String 1 and String 9 are often hindered
by the high cumulative current of inverters, making it hard
for the field personnel to detect. Therefore, Ej right-clicks
String 1 to select a top-down path (Fig. @B3). Later, Ej, edits
the corresponding entity, retaining only Inverter 8 and String
1 (Fig. B[C1). Finally, E} searches for similar paths in the
unexplored parts of the hierarchical time series (@ relate).
The result shows that there exist anomalous strings under
Inverter 1, which is an inverter with high cumulative current
values (Fig. BC2). In particular, E finds that String 9 and
String 17 under Inverter 1 not only exhibit low-current values,
but also reversing trend compared to the trend of Inverter 1.
FEy points out that String 9 and String 17 may have circuit
issues and require maintenance.

D. Case 3: Analyzing the Stock Market Dataset

In this study, E. aims to gather market information and in-
sights for a comprehensive assessment report on stock market,
which consists of two parts: identifying growing sectors and
stocks and analyzing heterogeneous trends in distinct periods.

Identify growing sectors and stocks (G1-3). First, F,
wants to summarize significant sectors and hot stocks with
growing trends. To ensure scale independence, he applies z-
normalization to all time series ([:Z compute). Initially, .
discovers that the index, after experiencing some fluctuations
in the earlier stages, shows a general upward trend in the
subsequent period. F,. brushes on the period for further
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Fig. 5. The process of identifying growing sectors and stocks. (A) Analyze
stocks under the Information Technology sector. (B) Analyze stocks under the
Consumer Staples sector with the operation of creating layers.
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Fig. 6. The process of identifying heterogeneous trends in distinct periods.
(A) Analyze sectors with upward and downward trends. (B) Analyze stocks
under the Energy and Industrials sectors. (C) After the operation of relate, a
similar path is identified under the Materials sector.

analysis. By sorting sectors based on the ratio of change, he
finds that sectors related to the technology industry have large
increases, while sectors like Energy and Materials show more
moderate trends (= rearrange, |:%| compute). E. then expands
the top five hottest sectors, and discovers that the circles under
the Information Technology sector are clustered in the scatter
plot (Fig. 1), indicating upward trends (E§ summarize).
These time series represent tech giants like Microsoft, Apple
and Nvidia (Fig. {JA2). Subsequently, in the scatter plot, E.
discovers two distinct clusters of stocks under the Consumer
Staples sector (Fig. 1) (Ea summarize, 4 compare). Thus,
E. creates layers to group similar stocks (Fig. [5B2), and
utilizes alignment to better differentiate the two categories of
time series (@8 reshape, compute). I, instantly finds that
the first category shows an upward trend, whereas the second
category declines in the early and middle stages (Fig. [5B3)
(B4 compare). Hence, E,. decides not to include the second
category in the collection of hot stocks.

Analyze heterogeneous trends in distinct periods (G1-
4). Through overlapped line plots, E. identifies significant



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

variations across sectors in the middle period and proceeds
to brush over this segment for detailed analysis. F. continues
to sort these based on the ratio of change (= rearrange,
compute). Two distinct clusters are visualized in the scatter
plot, where the left cluster represents sectors with upward
trends (Fig. [6JA1), and the right cluster represents sectors with
downward trends (Fig. E]AZ) (Ea summarize). E. shifts focus to
the Energy sector, which exhibits a large decline. Upon further
exploration, . finds that the underlying stocks are distributed
within a cluster in the scatter plot, trending downwards (Eg3
summarize) (Fig.[6B1). Moreover, E, investigates stocks under
the Industrials sector, part of the same industrial chain, and
notes that while most stocks exhibit a distribution similar to
that of the Energy sector, there exists two anomalous stocks
trending upwards (Eg summarize, 4 compare). Finding this
noteworthy, E. selects the corresponding path (Fig. [(B2), and
relate similar phenomena, revealing that within the declining
Materials and Financials sectors, there are stocks experi-
encing upward trend such as SHW (Fig. Ep) (D relate).
Subsequently, E. applies the operation of merging trees to
amalgamate the Energy and Industrials sectors (Fig. [(A) (&2
reshape, |:%| compute) and uses lasso to filter out outlier stocks,
systematically organizing the stocks within the same industrial
chain that consistently demonstrate downward trends.

E. Expert Interviews

After the case studies, we continue to conduct interviews
with domain experts F,, F} and E. to collect their feedback
on ChronoDeck and ask them to compare the analytical
process using ChronoDeck with their traditional workflows.

In general, all experts evaluate our proposed methods
favorably, acknowledging ChronoDeck’s effectiveness across
various analytical tasks. £, commends ChronoDeck’s abilities
in rearranging and reshaping hierarchical time series with the
multi-column layout: “In ChronoDeck, rearranging nodes and
adding new layers to group time series with similar features
become much more intuitive and efficient compared to manual
adjustment.” Ey praises ChronoDeck’s support for the relate
and compute tasks: “ChronoDeck makes these complex opera-
tions more automatic and seamlessly integrates them into the
system workflow.” E} also appreciates the alignment interac-
tion: “It brings out a clean look for users to compare multiple
sub-hierarchies. The layout in traditional system makes the
comparison of trees rather difficult.” E. highlights that scatter
plots on top of each column are helpful in identifying stocks
with various trends: “Such summary is necessary while lacking
in existing workflows. It also facilitates the comparison among
different groups of stocks with heterogeneous features.”

Meanwhile, experts offer some suggestions on future im-
provement. E, recommends integrating more time series visu-
alization techniques, such as spiral diagrams or circular glyphs,
into ChronoDeck to improve the representation of features like
seasonality. Ej suggests that a focus-context method can be
applied to each time series card, so that the user can not only
inspect the trend in the current time range, but also be aware
of the whole context. E. expects a more refined node-link
layout between adjacent columns with less edge crossings.

VII. DISCUSSION

The discussion is centered around four aspects: implications,
lessons learned, limitations and future work.

Implications. In this study, we propose a task taxonomy for
hierarchical time series analysis, which we think is applicable
to various applications involving hierarchy or time series data.
We also develop ChronoDeck, a system that adopts a multi-
column coordinated visualization for such analysis. We argue
ChronoDeck is capable to analyze data in a wide range of
domains like retail, energy, and urban computing.

Lessons learned. Two lessons are learned in the process.
First, while multiple coordinated views [71[]-[74] offer flexibil-
ity and scalability in exploring complex datasets, they could
introduce increased cognitive load and potential information
loss, particularly during the analysis of hierarchical time series.
Based on the feedback from domain experts after case studies,
the experts prefer integrated design [2]], [7] for such analysis,
as it enables them to cohesively analyze temporal and struc-
tural characteristics. Second, hierarchical context is essential.
Initially, we follow the drill-down strategy without additional
design features. But we find users uncertain about unfolding
without knowing the children nodes. To address this, we utilize
linked scatter plots to have a visual summary across levels, and
interactions like highlight to preview sub-hierarchies. In this
way, users can better analyze data at different levels.

Limitations. We have observed three major limitations in
our system. The first limitation can be analyzing hierarchical
time series with multiple variables in each aggregation levels.
Although we can overlap multiple time series, it may cause
visual clutter and also a high cognitive load for users to depict
the trend of each variable. Also, ChronoDeck is designed to
analyze the hierarchy whose sub-hierarchies are consistent, it
may not be suitable for the analysis of unstructured hierarchi-
cal time series. For example, hierarchical time series generated
by a coal-fired power plant [75], where different sub-systems
can possess heterogeneous hierarchical structure. In addition,
our method assumes time series in the same level share an
identical time range, so it cannot analyze time series with
non-uniform cycle intervals through creating layers. Besides,
while our taxonomy provides a systematic framework for
analyzing hierarchical time series, it can be further optimized
for comprehensiveness in two primary directions. On the one
hand, the entity categorization, currently features the structure
of the hierarchy, can be expanded to include different kinds of
time segments involved in the analysis. On the other hand, the
task summary can be extended to incorporate more advanced
analytical operations, such as explanatory tasks like root cause
analysis and query methods based on data properties.

Future work. To improve the capabilities of ChronoDeck
and make it applicable to a wider range of analytical scenarios.
First, we also want to adjust and expand our multi-column lay-
out, making it suitable for visualizing hierarchical time series
with heterogeneous sub-hierarchies. Second, we are intended
to incorporate multi-variable visualizations and algorithms
into the current system, further extending the coordinated
dimensionality reduction and small multiples visualizations to
accommodate multi-variable scenarios. Meanwhile, based on
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current studies on time lags among multiple time series [57]],
[75]-[77], we expect optimization for ChronoDeck to analyze
multiple time series with time lags within hierarchical time
series and visualize patterns like cascading effects. Finally, we
aim to apply ChronoDeck to real-time data analysis, assisting
experts and users in making timely and effective decisions.

VIII. CONCLUSION

This study proposes ChronoDeck, an interactive visual
analytics system which integrates multi-column representation
and diverse interactions to facilitate the analysis of hierarchical
time series. To tackle three major challenges, namely delineat-
ing diverse analytical tasks of hierarchical time series analysis,
visualizing the integration of hierarchical structure and time
series and supporting diverse hierarchy-aware analytical tasks
on many time series. We first generalize a taxonomy for hierar-
chical time series analysis by conducting literature review and
interviews with domain experts. Then we utilize coordinated
dimensionality reduction and small multiples visualizations,
alongside inter-column links to visualize hierarchical time
series. Various interactions are also employed to assist users in
the visualization and transformation of hierarchical time series,
comparison among different entities, and identifying entities-
of-interest. The effectiveness of ChronoDeck is evaluated by
case studies on three datasets and expert interviews.
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