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ABSTRACT

Accurate identification and diagnosis of inefficient photovoltaic (PV) strings are essential for en-
suring the stable operation of PV power stations. Existing studies primarily focus on automated
anomaly detection models based on temporal abnormalities. However, since anomaly analysis often
relies on domain knowledge, current methods have significant limitations in assisting experts in
understanding the causes and impacts of anomalies. In close collaboration with domain experts, this
study systematically identifies the specific user requirements for PV string anomaly detection and
proposes an innovative workflow for identifying and diagnosing inefficient PV strings. Furthermore,
we develop an interactive visual analytics system, PVeSight, to support experts in efficiently analyzing
and diagnosing PV string anomalies. The system leverages dimensionality reduction techniques and
weather clustering methods to generate string pattern maps, which are then utilized for anomaly
detection, anomaly classification, comparative analysis between PV strings, and degradation rate
assessment. This approach enables experts to accurately identify inefficient PV strings, trace the root
causes of anomalies, and gain valuable insights. Through case studies and evaluation experiments, we

validate the usability and effectiveness of PVeSight in PV string anomaly detection.

1. Introduction

In the contemporary era, with the continuous depletion
of fossil fuels and the increasing severity of environmental
pollution, the utilization of renewable energy has received
unprecedented attention. Solar energy, known for its clean-
liness, inexhaustibility, and economic advantages, is becom-
ing a crucial component of the global energy structure.
PV power generation technology is an effective means of
converting solar energy into electrical energy and plays a
vital role in the renewable energy sector.

However, with the commissioning and operation of a
large number of PV power stations, anomalies in core equip-
ment like PV strings are emerging incessantly. Anomalies in
PV systems can reduce power generation efficiency and pose
safety risks, including fire hazards. Moreover, as installed ca-
pacity significantly increases, the method of assigning staff
to inspect equipment device by device becomes impractical
due to manpower shortages. Therefore, developing effective
intelligent anomaly detection technologies for PV strings is
crucial.

In recent years, to enhance the performance of PV power
stations, researchers have proposed various advanced meth-
ods for detecting anomalies in PV strings. In traditional

*Corresponding author
%9 yurunyang@zju.edu.cn (Y. Yang); yixinjing@zju.edu.cn (X. Yi);
24039221@qq. com (Y. Jin); 1sien323@163.com (S. Li); 13436362144@139.com
(K. Ma); shliu@zju.edu.cn (S. Liu); dengdazhen@zju.edu.cn (D. Deng);
dweng@zju.edu.cn (D. Weng); ycwu@zju.edu.cn (Y. Wu)
ORCID(S): 0009-0009-8118-0827 (Y. Yang)

methods, Simon and Meyer (2010) used infrared thermogra-
phy to map the surface temperature distribution of solar cells
under reverse bias. They proposed a fault diagnosis method
based on infrared image analysis. Platon et al. (2015) inves-
tigated the operational status of PV strings under various
illumination conditions by simulating different surface tem-
peratures and irradiance levels, and comparing theoretical
normal values with actual measurements to identify anoma-
lies. However, the accuracy and determination of anomalies
heavily depend on expert-set thresholds and involve some
randomness. With the development of artificial intelligence
technologies, traditional PV string anomaly detection tech-
niques have seen new advancements. Chine et al. (2016)
proposed an anomaly diagnosis method for PV strings using
artificial neural networks (ANNs). This method involves
training neural networks using characteristic data such as
current, voltage, and peak values from the I-V curve of PV
strings under given irradiance and temperature conditions,
thus diagnosing string faults. Although this approach has
improved the accuracy of anomaly detection, it is highly
dependent on the quality of the sample data.

The integration of artificial intelligence with PV strings
anomaly detection improves the model’s accuracy but suf-
fers from a lack of interpretability due to its black-box
structure (Castelvecchi, 2016). Data visualization encodes
the attributes of data in intuitive visual charts (Liu et al.,
2014), incorporating human perception into data analysis
through human-machine interaction, thereby enhancing ac-
curacy and interpretability. Therefore, this paper applies
visual analytics technology to the anomaly detection of PV
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strings to delve deeper into the anomalies and their patterns
in the strings.

We propose a hierarchical anomaly detection method
based on dimensionality-reduced pattern maps. This method
utilizes the dimensionality reduction algorithm UMAP to
generate reduced pattern maps from time-series electrical
data of PV strings. Additionally, environmental data are
incorporated through K-Means clustering labels to further
enhance the dataset. The anomaly detection model is trained
hierarchically, considering the structural levels of the PV sta-
tion as well as weather classifications. Unlike common time-
series data anomaly detection methods, our approach does
not require drone inspection images or I-V scan results. We
employ an unsupervised model to address challenges such
as the lack of labeled data, diverse anomaly types, and large-
scale data. After discussing with PV field experts and sum-
marizing actual needs, a visual analytics system comprising
five views was designed to assist users in uncovering and
analyzing anomalies and patterns in PV strings. The visual
analytics system was applied to four months of electrical and
environmental data from a large PV station in a real-world
scenario. The system demonstrated its effectiveness in aiding
users to detect and verify anomalies, analyze situations, and
explore string operation conditions. The system’s usability
and effectiveness were evaluated through multiple case stud-
ies.

Our contributions are summarized as follows:

e We propose a novel anomaly detection method for PV
strings, utilizing dimensionality reduction and hierar-
chical methods to improve the model’s accuracy in
identifying anomalous strings.

e We developed a visual analytics system that provides
carefully designed visualizations and rich interactions
to explain the model’s anomaly detection results, facil-
itating efficient analysis and annotation of anomalous
strings by users.

e We conducted three case studies and evaluations to
verify the usability and effectiveness of the proposed
model and system.

2. Related Work

2.1. Photovoltaic string anomaly detection

PV power generation systems are an critical component
of the development of new energy systems. The energy flow
hierarchy of the system includes PV power stations, com-
biner boxes, inverters, PV arrays, PV strings, and PV mod-
ules. PV strings are a crucial component, and their opera-
tional stability determines the overall efficiency of the power
generation system. To ensure stable operation, intelligent PV
string anomaly detection technology is widely applied in PV
operation and maintenance (Tsanakas et al., 2016). Since
PV power stations generate a significant amount of time-
series data, including current, voltage, and I-V curves, which
PV string anomaly detection primarily relies on. Features

are extracted from these data to improve the accuracy of
detection, considering cost and feasibility (Eskandari et al.,
2023).

Common approaches to detecting anomalies in PV string
systems involve several traditional methods, including ground
capacitance measurement (Takashima et al., 2008), infrared
imaging detection (Gallardo-Saavedra et al., 2018), electro-
luminescence imaging (Otamendi et al., 2021), and time-
domain reflectometry (Roy et al., 2018). Although such
methods can diagnose and locate faulty strings, they require
significant investment in sensor equipment in terms of
performance and quantity. The practical application costs
increase with the scale of the power station, and there are
limitations on the types of faults covered (Zhu et al., 2019).

To reduce costs and improve detection accuracy, re-
searchers have proposed combining expert knowledge with
mathematical models. By comparing the differences be-
tween the outputs of theoretical models and actual observa-
tions, judgment thresholds are set based on expert experi-
ence and reference data, and these thresholds are applied for
anomaly detection of strings (Silvestre et al., 2013; Drews
et al., 2007). These efforts have somewhat reduced costs and
improved fault detection rates. However, threshold selection
heavily depends on the model, introducing randomness in
performance. Additionally, the mapping from operational
status to threshold variables, based on data and expert expe-
rience, lacks generalizability across different systems, limit-
ing its practical applicability.

With improvements in computer hardware performance
and rapid developments in artificial intelligence technolo-
gies, numerous anomaly detection models and algorithms
such as Support Vector Machines (SVM) (Cortes and Vap-
nik, 1995), Random Forest (Breiman, 2001), deep learn-
ing models like Convolutional Neural Networks (CNN)
(Kramer, 1992), and AutoEncoders (Krizhevsky et al., 2017)
have been proposed. Supervised methods (Manno et al.,
2021) require a large labeled dataset, which is challenging
to satisfy in PV scenarios due to the scarcity of fault
samples. Similarly, semi-supervised methods (Zhao et al.,
2013) also rely on labeled data. Unsupervised methods
(Zhu et al., 2018), although not requiring labeled samples,
still lag in accuracy compared to the former two. Overall,
methods incorporating artificial intelligence have shown
certain improvements in performance and generalizability,
but challenges still exist when applied to large-scale time-
series PV datasets.

2.2. Time series visual analysis

Time series data consists of sequences of data points
arranged in chronological order, with each point containing
the state occurring at that moment. Based on the number of
state attributes, time series can be classified into univariate
and multivariate time series. Common time series data in
the real world, such as log data, stock and financial data, and
energy data, are usually sampled at fixed time frequencies
(e.g., yearly, monthly, daily). Effective analysis of time series
helps to uncover the underlying structures and patterns, and
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is widely applied in scientific and engineering fields. For
example, in the fields of economics and finance, models
like autoregressive integrated moving average (ARIMA) and
autoregressive conditional heteroskedasticity (ARCH) are
used to forecast the price fluctuations of financial assets;
in stock analysis, methods such as template matching and
Dynamic Time Warping (DTW) identify recurring patterns
or shapes in time series; and anomalies in time series are
identified using statistical methods like the 3-sigma rule
and Grubbs’s Test, similarity-based methods like DBSCAN,
LOF, Isolation Forest, as well as machine learning mod-
els including generative AutoEncoders and discriminative
LSTMs.

As the scale and dimensions of time-series data in-
crease, they present challenges with varied structures and
complex content for data analysis tasks. Interactive visual
analysis techniques combine visual chart information with
human perception (Kohlhammer et al., 2011), aiding tasks
such as pattern recognition, comparative analysis, and result
traceability. Fan et al. (2017) developed a visual analysis
system based on smartphone data, introducing a multi-view
interactive approach to explore users’ behavior patterns with
their phones and analyze the causes of specific events. Malik
etal. (2016) employed an efficient hypothesis testing method
to systematically explore and compare relationships between
large-scale event sequences, also conducting tests on medi-
cal datasets. Franklin et al. (2016) assisted healthcare pro-
fessionals and patients in discussing and choosing the most
suitable treatment options. By analyzing the event sequences
related to different drug efficacies and side effects, it summa-
rizes suitable plans, aiding users in decision-making.

Anomaly detection is also a major focus in time-series
visual data analysis research. Thom et al. (2012) proposed
a visual analysis method for spatio-temporal anomaly de-
tection using geolocated Twitter messages. This method
extracts keywords, time, and coordinates from tweets, ap-
plies clustering to obtain grouped tag clouds, and employs
statistical analysis to identify clusters with significantly dif-
ferent patterns. Riveiro et al. (2008) performed anomaly
detection on ships based on sensor data, integrating multiple
sources such as radar and satellite images. They detected
attributes such as ship speed and historical behaviors of ships
docking, meeting the needs for processing large volumes of
information and rapidly identifying anomalous behaviors.
Cao et al. (2016) addressed large-scale data management
and user security on social platforms by extracting behav-
ioral characteristics from users’ text, login, and interaction
information. Anomaly detection algorithms were employed
to identify suspicious users, and their behavioral traits were
visually encoded for display. These studies offer valuable
insights that we used to design our PV data-based visual
anomaly detection system.

3. Background

3.1. Problem Statement

During the operation and maintenance of PV power
stations, certain PV strings may experience a significant
reduction in power generation efficiency due to environ-
mental factors, equipment aging, or operational anomalies,
resulting in inefficient strings. Timely identification of these
inefficient strings and accurate diagnosis of their root causes
are crucial for ensuring the long-term stable operation of PV
power stations. However, this task poses several challenges,
primarily in the following three aspects:

Q1. How to effectively utilize massive power sta-
tion operation data for inefficient string identification
in the absence of labeled data? PV power stations are
typically equipped with monitoring systems that collect
multi-dimensional operational data in real-time, including
direct current (1,,.), voltage (V,,), alternating current power
(P,.), ambient temperature (T'), and irradiance (G). The
state of a PV string at time ¢ is represented as X t’ =
{I4esVyer P T, G, ...} € RY, while the overall state
of all N strings in the power station is given by X, €
RNxd Although this data contains rich information, the
complexity of inefficient string manifestations makes tra-
ditional threshold-based methods ineffective, while existing
intelligent approaches rely heavily on labeled data. However,
in practical applications, labeled data is extremely scarce,
and existing methods often depend on additional monitoring
techniques (e.g., infrared imaging, I-V curve scanning),
increasing operational costs.

Q2. How to mitigate the interference of non-operational
factors and improve the accuracy of inefficient string
identification? The power generation performance of PV
strings is influenced not only by operational factors (e.g.,
short circuits, dust accumulation, hot spots) but also by non-
operational factors such as installation position, orientation,
and tilt angle, as well as transient shading (e.g., clouds,
birds). These factors may lead to increased false positive
rates, affecting maintenance decisions. Given a PV string i at
time ¢, its theoretical power output is denoted as Pl.’h(t) and
its actual power output as Pi“c’ (t). The relative inefficiency
metric is defined as D;(t) = (P™(t) — P(1))/P"(1).
If inefficient strings are identified solely based on a fixed
threshold D;(¢) > 7, transient fluctuations may be mistak-
enly classified as anomalies.

Q3. How to accurately differentiate various types
of inefficient strings and enhance diagnostic reliability?
Inefficient strings may result from multiple causes, including
dust accumulation, shading, hot spots, bypass diode failures,
and microcracks, with potential interdependencies among
these factors. For example, dust accumulation can exac-
erbate hot spots, eventually leading to short circuits. Let
the state vector of a PV string be X i and let the set of
inefficiency categories be C = {c|, c,, ..., ¢ }. The objective
is to compute P(C = ¢;|X t’ ) to determine the inefficiency
category of the string. However, the coupling effects among
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Figure 1: Workflow of inefficient PV string identification and
root cause diagnosis: An interactive visual analysis system
as the core, integrating upstream identification models and
downstream diagnosis models

different failure types make traditional classification meth-
ods less effective in precise modeling.

To address these challenges, we propose an inefficient
PV string identification and root cause diagnosis workflow,
as illustrated in Fig. 1. This workflow takes power station
operational data as input, initially identifying inefficient
strings through a detection model, followed by an interactive
visual analytics system for diagnosis, determining both the
inefficiency status and category of each string. Additionally,
the diagnostic results contribute to the development of an
intelligent and reliable root cause diagnosis model, enabling
precise differentiation of complex inefficiency types. More-
over, these results serve as feedback to iteratively refine
the inefficient string identification model, improving overall
recognition accuracy and robustness.

3.2. Dataset

In this work, we collected real operational data from
five PV stations located in different geographical areas in
Zhejiang Province, China. Due to the similarity in data
structures across these stations, we use one station as an
example, which has an installed capacity of approximately
25 MWhp. Its architectural configuration consists of string in-
verters, local voltage boost, and centralized grid integration.
The facility utilizes over 50,000 uniform high-efficiency
monocrystalline panels, organized in a hierarchical structure
from modules to strings to inverters to transformer boxes.
Data collection was facilitated by a dedicated PV station
NCS backend monitoring system.

The dataset encompasses both time-series electrical
measurements and environmental data. The electrical dataset
captures readings from 8 transformer boxes (Fig. 2 al),
75 inverters (Fig. 2 a2), and 1350 strings (Fig. 2 a3),
recorded every minute from December 9, 2022, to March
26, 2023. It includes parameters such as DC side current and
voltage, AC side three-phase current and voltage, active and
reactive power, IGBT temperature, and daily and cumulative
power generation. The PV power station follows a top-down

0 :’ @
R 288 R 288
e 288 PR 288
=1
o Over Max No Light Internal External

53

Communication Environment

Figure 2: Pipeline for obtaining PV data set. (a) The structural
components of a PV power station, including transformer
boxes, inverters, and strings. (b) The preprocessing of the
original data set, including Handling Error Values, Imputing
Missing Data, and Filtering Noise.

hierarchical structure from transformer boxes to inverters to
PV strings. Accordingly, each string’s id follows the format
BT[number]-1[number]-PV[number], representing the serial
number at each level. The environmental data, collected at
the same one-minute intervals, include global irradiance,
ambient temperature, and wind speed, which are critical to
assessing the performance of the PV strings.

The initial dataset contained numerous anomalies caused
by equipment malfunctions and communication breakdowns,
necessitating the design of an appropriate data preprocessing
workflow (Fig. 2). This involved 1) handling error values
due to sampling equipment defects, which resulted in mon-
itoring data that violated real conditions, such as current
values under no-light conditions, exceeding rated current,
or negative values (Fig. 2 bl); 2) imputing missing data
caused by communication failures, which led to extensive
gaps in the dataset and severely affected the training and
validation of subsequent models (Fig. 2 b2), addressed
through linear or nonlinear interpolation methods; and 3)
filtering noise introduced by unstable communications or
factors like cloud cover, affecting the time-series data (Fig. 2
b3), mitigated by using a moving average method (Chou,
1969) to smooth the data and reduce interference.

3.3. Requirement analysis

To facilitate the development of a visual analytics sys-
tem, we engaged in close collaboration with three experts
(E1, E2, and E3) in the field of PV. Experts E1 and E2 are
senior researchers with over a decade of experience in energy
research, while E3 has been involved in PV research for more
than five years. Through regular meetings with these experts
and on-site field research at PV power stations, we identified
the main operational challenge as the inefficiency of PV
strings. Previous studies have applied machine learning or
deep learning techniques to detect anomalies in PV strings,
identifying faulty strings for maintenance personnel to re-
pair. However, most methods (Kellil et al., 2023; Korkmaz
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and Acikgoz, 2022; Fonseca Alves et al., 2021) rely on
high-quality annotated data, which is costly to obtain in
practical scenarios. Inherent factors (e.g., equipment de-
fects and installation angles) and transient disturbances (like
cloud cover) can lead to severe false positives in the models
(Zhao et al., 2019), increasing processing costs. Addition-
ally, the inherent black-box nature of these model methods
(Castelvecchi, 2016) results in outputs lacking interpretabil-
ity, making it difficult for users to understand the impact
of different input features and derive effective analytical
conclusions. The experts emphasized that existing anomaly
detection methods still fail to balance usability, accuracy,
and interpretability. Combining PV string anomaly detection
with visualization is crucial for effectively identifying ineffi-
cient strings and enhancing model interpretability. Through
prolonged and in-depth exchanges with the three experts, we
summarized the following list of requirements for the visual
analytics system:

R1. Display of anomalous distribution across all PV
strings. The anomaly detection model outputs the proba-
bility of anomalies for all input strings. Textual or tabular
presentations of this data neglect the hierarchical structure
of the strings within the station, making it less intuitive for
users to understand the overall condition of the station. A
fundamental feature of the proposed system is a hierarchical
display of anomalies across the transformer box, inverter,
and string levels.

R2. Enhanced interpretability of the anomaly de-
tection model. Models built on machine learning or deep
learning algorithms inherently possess a "black box" nature,
which hinders users from interpreting the relationship be-
tween inputs and outputs. The system must provide intuitive
visualizations that map these relationships, aiding users in
analyzing and verifying patterns within the data and algo-
rithms.

R3. Guided exploration and analysis of string pat-
terns. Faced with a vast amount of string data, the system
should guide users through the analysis process. By using
coding forms such as size, shape, and color, along with
comparison, filtering, and recommendation operations, the
system assists users in accurately analyzing the model re-
sults.

R4. Hierarchical interactive comparative analysis
among different strings. PV strings have a multi-layered
structure. Strings under the same inverter share similarities
in aspects such as irradiance, temperature, and orientation.
The system should provide hierarchical interactive meth-
ods, allowing users to compare and analyze strings from
different perspectives—location, time, and environmental
conditions—to unearth meaningful patterns within the string
data.

RS. Facilitation of data labeling for users. During
operation, PV stations generate large volumes of unla-
beled time-series electrical data, and downstream tasks like
anomaly detection and root cause analysis require extensive
labeled data to improve accuracy. Much of this time-series
data is underutilized due to the lack of labels. By integrating

human perception and expert experience, the visual analytics
system can rapidly produce valuable labeled data, supporting
more complex downstream tasks.

4. Anomaly Detection

Driven by the actual requirements identified in our re-
search, we designed an interactive PV string anomaly de-
tection framework to identify inefficient strings in solar
power stations. The workflow of the entire anomaly detec-
tion framework is shown in Fig. 3, starting with loading the
time-series electrical and environmental data collected from
the solar power station, and then performing data cleaning
through a series of well-designed preprocessing operations.
Next, the dimensional transformation operations and the
UMAP (Mclnnes et al., 2018) are used to calculate the
reduced-dimension pattern maps corresponding to the time-
series electrical quantities of the strings. Simultaneously, the
environmental data of the power station are clustered using
K-Means (Macqueen, 1967) to compute cluster labels for
each time point, and the clustering results are mapped back
to the generated string dimensionality-reduced pattern maps.
In the anomaly detection model, the dimensionality-reduced
pattern maps labeled with weather tags are used as input. The
maps are grouped hierarchically according to inverters and
weather categories, and corresponding anomaly detection
models are trained individually for each group. The results
from each model are aggregated to generate the final output.
Finally, the developed visual analysis system presents the
model results in a visual form to the users and provides inter-
active operations to guide users in exploring and analyzing
the results.

4.1. Dimensionality reduction pattern

Time-series electrical data of the strings is transformed
into dimensionality-reduced pattern maps using algorithms,
capturing potentially important feature information hid-
den in the data (Fig. 3 A). The process of generating
dimensionality-reduced pattern maps for the strings con-
sists of three parts. The first part involves downsampling
the time-series data (Fig. 3 Al). The original time-series
electrical data has a time granularity of 1 minute. To reduce
computational costs without losing precision, the granularity
is downsampled to 1 hour using an averaging method.
Assuming the total length of the time series is n and here
is one feature (mainly focusing on real-time string current),
the shape of the input vector after downsampling changes
from (n, 1) to (n/60, 1). The second step is the dimensional
transformation (Fig. 3 A2). After downsampling, the number
of points per day is 24, so every 24 points are transformed
into one row, changing the input vector’s shape (n/60, 1)
to (n/1440, 24), where each row represents the current data
of the string for one day. Finally, we use a dimensionality
reduction algorithm to transform the dimensionally trans-
formed data into a pattern map (Fig. 3 A3). Using the
UMAP algorithm, the 24-dimensional vector is converted
into a 2-dimensional vector, and the shape of the input
vector changes from (n/1440, 24) to (n/1440, 2), projecting
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Figure 3: The PV string anomaly detection framework comprises three parts: (A) Dimensionality Reduction Pattern, which
transforms time-series data into 2D pattern map; (B) Weather Clustering, which clusters weather data to enrich the maps’
information; (C) Hierarchical Detection Model, which trains the anomaly detection model hierarchically based on power station

structure and weather conditions.

it onto a 2-dimensional plane (Fig. 3 A4). Each point in the
dimensionality-reduced pattern map represents the power
generation condition of a string on a specific day.

The time-series electrical data is downsampled for two
main purposes. 1) to reduce computational costs and acceler-
ate the training of the subsequent anomaly detection model.
2) to filter out short-term disturbances, such as cloud cover,
thereby reducing data volatility. Next, we transform the 1-
dimensional feature into 24 dimensions and change the time
granularity from 1 hour to 1 day, which further reduces the
data size. Finally, we use the UMAP to project the high-
dimensional data onto a 2-dimensional plane, facilitating
the transformation from time-series data to a pattern map.
Each point on the pattern map represents a string’s power
generation status on a specific day. The spatial distance
between points reveals the similarity of the string’s status
over different time periods: closer distances indicate higher
similarity, while farther distances indicate lower similarity.
Through the spatial characteristics of the dimensionality-
reduced pattern map, similar points cluster together, while
outliers represent the time points of string anomalies, i.e.,
the inefficient modes of the strings. By translating the time-
series anomalies of string electrical data into more intu-
itive two-dimensional spatial distance anomalies, the inter-
pretability of the anomaly detection model results is en-
hanced. Furthermore, each point represents the data char-
acteristics of a string for one day, rather than one hour or

one minute, achieving a good balance between accuracy and
computational complexity.

4.2. Weather clustering

Varying weather conditions significantly affect the power
generation performance of strings. When using the spatial
distance characteristics of dimensionality-reduced pattern
maps to identify outliers, different irradiation conditions
can interfere with the judgment of outliers. For example,
strings operate better under high irradiation conditions with
higher total power generation, whereas under low irradia-
tion conditions, their performance tends to deteriorate. If
there are outlier points under high irradiation conditions,
it becomes difficult to distinguish these from points under
low irradiation conditions in terms of spatial distance,
reducing the accuracy of the model in identifying anomalous
strings. Therefore, it is necessary to group and cluster
the strings based on weather conditions at different times,
aligning with the time dimension of individual points in
the dimensionality-reduced pattern map. Using one day
as the smallest unit, the K-Means is employed to cluster
the time series. The main clustering factor chosen is the
irradiance level, which has the most significant impact on the
power generation performance of PV strings. The number of
clusters is set to three for representativeness and simplicity,
representing low, medium, and high irradiance levels.

The specific implementation process for weather clus-
tering is shown in Fig. 3(B). The shape of input vector
is (n,1) , where n represents the total time length, and
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the 1 corresponds to the feature of irradiance size. The
collection frequency of irradiance data is also 1 minute;
thus, downsampling is used to convert the time granularity to
hourly, changing the vector shape to (1n/60, 1). This reduces
the computational load of the model and mitigates data
fluctuations caused by communication failures and other dis-
turbances. The next step involves segmenting the irradiance
data by day, with individual vector shapes becoming (24, 1),
which serves as the subject for the K-Means. Days with
similar weather conditions are grouped into the same cate-
gory, resulting in three clusters representing low, medium,
and high irradiance levels (Fig. 3 B1), color-coded blue,
, and red. The daily weather condition labels calculated
are then mapped back to the strings’ dimensionality-reduced
pattern maps to provide the input for the anomaly detection
model, as shown in Fig. 3(B2) with weather-labeled string
dimensionality-reduced pattern maps.

4.3. Hierarchical detection model

When detecting faults in PV strings, the most straight-
forward approach is to compare their power output or cur-
rent with other strings. PV strings with the same speci-
fications should produce equal electricity under identical
environmental conditions (e.g., irradiance, tilt angle) when
functioning normally. However, for large-scale solar power
stations, the geographical location differences between dif-
ferent strings can be significant, and the variations in spatial
distribution lead to differences in orientation, irradiance,
temperature, and other factors among the strings. As a result,
strings with lower power output may still operate normally,,
leading to a high rate of false positives in detection results
(Zhao et al., 2019). A viable solution is to consider the
hierarchical structure of PV strings. Strings connected to
the same inverter are geographically close, sharing similar
environmental conditions like orientation, irradiance, and
temperature, making the results comparable and reducing
false positives. Therefore, when constructing a model for
anomaly detection of PV strings, hierarchical grouping and
training of fit models are used to simulate the comparison
process mentioned above, aiming to enhance the model’s
accuracy in identifying anomalies (Fig. 3 C1).

After obtaining the dimensionality-reduced pattern maps
of the PV strings labeled with weather conditions through
clustering algorithms, a hierarchical structure can also be
used to train the anomaly detection model. When fitting
models to the dimensionality-reduced pattern maps of all
strings under a single inverter, the distribution of points
in the pattern maps is significantly influenced by different
weather conditions such as irradiance. The spatial distance
between points under high and low irradiance conditions
varies greatly, and the outlier characteristics of anomaly
points can easily confuse the model’s recognition ability.
Therefore, by utilizing the introduced weather clustering la-
bels to group the dimensionality-reduced pattern maps at the
inverter level, a separate anomaly detection model is trained
for each weather condition to eliminate data distribution

biases caused by irradiance factors, further optimizing the
model’s performance (Fig. 3 C2).

Based on the ideas mentioned above, we propose a hier-
archical anomaly detection method for PV strings based on
dimensionality-reduced pattern maps of time-series electri-
cal data, with the overall architecture illustrated in Fig. 3(C).
First, the labeled dimensionality-reduced pattern maps of the
PV strings serve as the input for model training. Adopting a
hierarchical approach, the data is grouped according to the
corresponding inverters into Invy, Inv,, ..., Inv, where n
represents the total number of inverters in the dataset, and
group Inv; represents the dimensionality-reduced pattern
maps of all branch strings under inverter i (Fig. 3 C3). In the
second step, all dimensionality-reduced pattern maps within
each I'nv; are combined, and each point is grouped according
to its corresponding weather clustering label. Each group
I'nv, is further divided into 1nv; ;5. 1n0; jyeq and 1n0; 0,
corresponding to low, medium, and high irradiance levels,
respectively (Fig. 3 C4). Finally, after two stages of group-
ing, a separate anomaly detection model is trained for each
Inv; 14pe (i = 1,2, ..., n;label = low|med|high), as shown
in Fig. 3(C5). Inspired by the concept of ensemble learn-
ing (Opitz and Maclin, 1999), we chose to combine three
unsupervised models: One Class SVM, Elliptic Envelope
(Rousseeuw and Driessen, 1999), and Local Outlier Factor
(Breunig et al., 2000). The weighted average of these three
models serves as the output of the anomaly detection model.

The structure of the composite model fully leverages the
advantages of each model across different data distributions.
For instance, One Class SVM does not rely on a probability
distribution model of the data, making it suitable for datasets
with unknown or complex distributions. The introduction
of kernel tricks enables it to capture non-linear features of
the data, enhancing detection accuracy. Elliptic Envelope
uses the covariance matrix to comprehensively consider the
interrelations between dimensions, providing a simple and
efficient calculation, suitable for large datasets that follow a
multivariate normal distribution. Local Outlier Factor eval-
uates the anomaly level of a data point by comparing the
density of its local neighborhood, independent of the global
data distribution, and can handle varying density patterns.
In the experiments, we compared the combinations of seven
models: Isolation Forest, One Class SVM, Elliptic Envelope,
Local Outlier Factor, Gaussian Mixture Model (GMM), DB-
SCAN, and OPTICS. We calculated the identification rate
of anomalous strings in their Top-K data (detailed content
is provided in section 7) and ultimately selected the com-
bination of One Class SVM, Elliptic Envelope, and Local
Outlier Factor as the basic model for PV string anomaly de-
tection due to their superior performance and computational
efficiency. Using more advanced machine learning or neural
network models could achieve even higher accuracy.

The output of the model consists of all outlier points
from the dimensionality-reduced pattern maps after hier-
archical grouping. To quantify the anomaly level of each
string, the anomaly value R, for each string is defined as
eq. (1). This means that each string’s anomaly value is ob-
tained by a weighted sum of the number of its corresponding
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outlier points. The larger the R,, the higher the degree of
anomaly in the string. A threshold arr_thr is set in the model
to differentiate whether a string is anomalous. The arr_thr
value is automatically calculated using the common 3-sigma
statistical method. If a string’s R, > arr_thr, the model
identifies it as an anomalous string, and vice versa.

1 n . 1 n
- h Out,,_ocsvmiEE|ILOF — M”’(; Yo, Out)

R 1
Max(; Z?:l Out)

a

¢y

Beyond identifying inefficient PV strings in a power
station, further evaluating the extent of performance degra-
dation caused by inefficiency is crucial for making effec-
tive maintenance decisions. In practical applications, string
failures do not always directly lead to performance degra-
dation; instead, photovoltaic strings may experience grad-
ual deterioration due to aging or environmental factors.
Therefore, if the degree of string performance degradation
can be scientifically quantified, maintenance personnel can
prioritize addressing inefficient strings that are significantly
affected by external factors, thereby improving operational
efficiency. To this end, we propose a novel string degradation
rate evaluation algorithm. The core idea is to first filter out
normal strings using an inefficiency identification model and
then fit the distribution boundary of the normal data clus-
ter in a two-dimensional space based on a dimensionality-
reduced pattern map. Subsequently, the proportion of each
string’s data points deviating from the normal distribution
boundary in the pattern map is calculated as an approximate
measure of the string performance degradation rate.

K
LO|x)=px)= MinMax(Z T N Xy, Z)
k=1
E,(G | X)

. 2)
L,(0|argminL,(0 | x € Cy))

R,(t) =max|0,1 —

R, =D R,
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Specifically, the identification model is first used to filter
out inefficient strings. For the remaining normal strings Cp;,
a hierarchical grouping method is applied, categorizing them
based on their associated inverters and weather conditions.
Instead of adopting a composite structure of multiple un-
supervised models, the Gaussian Mixture Model (GMM)
is employed to fit the distribution characteristics of the
normal strings’ dimensionality-reduced pattern maps in a
two-dimensional space and to estimate the corresponding
normal distribution boundary. After fitting the GMM to the
normal string data, the likelihood value £(0) is computed for
each data point in the dimensionality-reduced pattern maps
of all photovoltaic strings. This value reflects the consistency
of the data point with the normal string group. A higher
likelihood value indicates that the point is closer to the
normal string distribution, whereas a lower value suggests
a higher degree of abnormality. Based on this property,
the string degradation rate R, is further defined, as shown

in eq. (2). First, the MinM ax normalization method is
applied to map the likelihood values of each data point in
the dimensionality-reduced pattern map, computed under
the fitted GMM, to the range [0, 1]. The data is then grouped
based on time. Within the same time period, the minimum
likelihood value £(6) among all normal strings is taken as
the baseline for evaluating the deviation degree of each data
point in the time group ¢. The deviation degree is calculated
as the ratio between the likelihood value of a data point,
L,(0 | x), and the baseline value, £,(0 | argmin L,(6 | x €
X

Cn)). If the likelihood value L£,(6 | x) exceeds the baseline,
it is set to O, indicating that the string performs normally at
time ¢. Finally, the deviation degrees R,(f) of each string
over all time periods ¢ are aggregated using a weighted sum
to obtain the approximate string degradation rate R;. This
value quantitatively reflects the trend and extent of string
performance degradation, providing a scientific basis for
maintenance decision-making.

5. Visual Design

Based on the established design requirements, we de-
veloped the interactive visual analysis system PVeSight, as
shown in Fig. 4. PVeSight consists of five collaborative
views designed to facilitate intuitive and seamless user in-
teraction, while the visual design incorporates unified color
coding and spatial layout adjustments to reduce the visual
burden on users. In this section, we will detail the design
approach and interactive features of each view.

5.1. Global View

The Global View (Fig. 4 A) displays the recognition
results of the PV string anomaly detection model on the
dataset through frequency distribution histograms and a
treemap. This view helps users explore and understand the
operational status of the PV station (R1, R2).

The frequency distribution histogram (Fig. 4 Al) dis-
plays the anomaly value distribution for all strings in the
station calculated by the PV string anomaly detection model.
The horizontal axis shows the magnitude of anomaly val-
ues, and a red vertical line in the middle represents the
anomaly discrimination threshold automatically calculated
by the model using statistical methods. The slider above
the histogram adjusts the Anomaly Threshold value. By
normalizing, the anomaly values calculated by the anomaly
detection model are mapped to the interval [0, 1]. Users can
modify this by dragging left or right or by clicking the *A’
or v’ buttons on the right side to increase or decrease the
value in increments of 0.01. After users modify the Anomaly
Threshold, the associated results in the Hierarchy View and
Pattern View will also be regenerated.

The treemap (Fig. 4 A2) hierarchically displays the
anomaly values of all strings in the station as calculated by
the PV string anomaly detection model. Initially, it displays
the box transformer level, where each rectangle represents
a box transformer in the station. The upper left corner of
the rectangle displays the corresponding box transformer
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Figure 4: The PVeSight interface consists of five views. Global View (A) displays the overall abnormal conditions of the power
station, guiding users to explore and detect string anomalies. Hierarchy View (B) provides a dimensionality reduction pattern map
of the selected inverter along with the model's detection performance. Top View (C) shows information on all strings under the
selected inverter. Pattern View (D) is used to analyze potential patterns in the time series and dimensionality reduction of the
specified string. Analysis View (E) explains and annotates possible causes of model anomalies.

number, formatted as BT[number] (such as BT001). The
upper left corner of the outermost layer represents the parent
element, which is the overall PV station. On the right side
is a color scale for the rectangles, ranging from left to right,
representing anomaly values from O to 1, with deeper colors
indicating higher anomaly values. Clicking on a rectangle,
such as BT001, the treemap will display the next level, which
is the inverter level, now with BT0O1 as the parent element.
Each rectangle represents an inverter within the station, with
the inverter number in the upper left corner, formatted as
BT[number]-1[number] (such as BT001-1001). If a rectangle
representing an individual inverter is clicked, the treemap
will not proceed to the next level, but the content in the
associated four other views will be regenerated. If users wish
to return to the previous level, they should click the back
arrow in the upper right corner of the outermost layer. Since
the anomaly detection model calculates anomaly values for
individual strings, each rectangle in the treemap represents
the average anomaly value of its child elements. For an
inverter, it is the average of its PV strings, and for a box
transformer, it is the average of its inverters.

5.2. Hierarchy View

The Hierarchy View (Fig. 4 B) shows the dimensionality-
reduced pattern maps and the model’s recognition results for
all strings under a selected inverter in the Global View, using
scatter plots and contour maps. This view assists users in

analyzing and interpreting the detection results of a single
inverter and the model (R2, R3).

After selecting the inverter ID, the system retrieves
the dimensionality-reduced pattern maps for all associated
strings and combines them into a scatter plot for display,
aiding in the analysis of string operations under that in-
verter. To ensure comparability and consistency, the x and
y axes of the scatter plot are set to the global minimum
and maximum values of the dimensionality-reduced pat-
tern maps for all strings in the station, adjusted by +5%
of the range. This allows for the detection of anomalous
patterns when switching between different inverters, aiding
in user exploration and analysis. Visually, the three weather
labels in the string’s dimensionality-reduced pattern maps
are color-coded as blue (Fig. 4 B3), (Fig. 4 B2),
and red (Fig. 4 B1) to represent low, medium, and high
conditions, respectively, enhancing the informativeness of
the scatter plot. This helps users distinguish the distribution
of different types of points and understand the impact of
weather factors on the dimensionality-reduced pattern maps.
Additionally, the scatter plot includes zooming and panning
functionalities, allowing users to analyze both the overall
and local features of the inverter. When a user hovers the
mouse over a point, the corresponding attribute information
is displayed, including the string number, time, and anomaly
value.
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Figure 5: The impact of different boundary and n components
on the distribution of the contour map.

To further enhance the expressiveness of the combined
inverter’s dimensionality-reduced pattern map, we used the
contour map. We define the contour map as the boundary of
normal point distribution obtained by fitting a GMM model
trained on normal PV strings identified by the anomaly
detection model. The contour line boundary values are cal-
culated using the k-sigma method, computing the 4 — ko
of all points’ likelihood values (by default, k=3). Smaller
likelihood values indicate a lower probability of belong-
ing to the distribution. Additionally, two sliders are placed
above the scatter plot. 1) boundary adjusts k for the con-
tour map boundary calculation, with a range of [1,5]. 2)
n_components controls the n_components hyperparameter
of the GMM model, setting the number of sub-distributions
present in the GMM model. The larger the number, the more
complex the fitted distribution, with a range of [1, m], where
m is the total number of strings under that inverter. The
default value is obtained by calculation using the Bayesian
Information Criterion (Schwarz, 1978). By adjusting these
two parameters (Fig. 5), the system can fully leverage human
perceptual advantages, making the model’s fit of the normal
point distribution of strings more accurate.

5.3. Top View

Top View (Fig. 4 C) displays the raw current data of all
strings under the inverter selected in the Global View, as well
as the output results calculated by the model. Users can filter
the strings of interest based on the displayed data and metrics
for analysis in the Pattern View and Analysis View (R3, R4).

The view is presented in a tabular format, containing
four columns from left to right: Pid, Distribution, Ra, and
Rd. The Pid column shows the string number under the
inverter, formatted as BT[number]-1[number]-PV[number].
For example, if the inverter is BTO01-I001 and the Pid is
PV1, then the string number format is BT001-I001-PV1.
The Distribution column shows a line chart thumbnail of the
string’s time-series current data, with the x-axis representing
time (December 9, 2022, to March 26, 2023) and the y-

axis representing current values (0 to (1 + 5%) X 1,,,.),

ensuring visual comparability. The Ra and Rd columns
correspond to the anomaly values and degradation rates of
the strings, respectively, both ranging from [0, 1] and dis-
played as horizontal bar graphs, with longer bars indicating
higher values in the corresponding column. Additionally, a
sorting function has been added to the table header, allowing
users to reorder the results by Pid, R,, and R, values in
ascending or descending order to select strings of interest
for further analysis. Users can select strings by dragging the
corresponding time-series graph into the Pattern View. Top
View displays data for all strings under one inverter, and
when the data volume exceeds the page length, users can
switch pages using the pagination feature at the bottom to
view results for all strings.

5.4. Pattern View

After selecting PV strings in the Top View, users can
explore the corresponding time-series current graphs and
dimensionality-reduced pattern maps in the Pattern View
(Fig. 4 D). By comparing horizontally and vertically, users
can investigate the differences and similarities between the
anomaly and normal PV strings’ pattern maps and derive
insights (R2, R4).

The Pattern View consists of line charts and scatter plots.
The line chart (Fig. 4 D1) represents the time-series current
data of the PV string selected through the drag-and-drop
interaction in the Top View, with the x and y axes settings
identical to those in the thumbnail line chart of the Top View.
There are two time-series current graphs for the strings in the
line chart. The string marked in red serves as the analysis
string, typically selected from strings with higher Ra or Rd
values in the Top View. The string marked in blue serves
as the reference string, usually selected from strings with
lower Ra and Rd values in the Top View. Users obtain
insights into the reasons for the higher Ra or Rd values
of the analysis string by comparing the current deviations
over the same period with the reference string, and interpret
the results reasonably with domain knowledge. Additionally,
the line chart also includes horizontal zooming and dragging
features, facilitating detailed analysis of specific sections by
users.

The scatter plot consists of two parts. The left side
represents the dimensionality-reduced pattern map of the
analysis string (Fig. 4 D2), while the right side represents
that of the reference string (Fig. 4 D3). Both sides display
the string’s identifier in the upper left corner, formatted as
BTO001-1001-PV1, with colors consistent with those in the
legends of the line chart. The dimensionality-reduced pattern
maps of the strings employ the same presentation method as
the combined dimensionality-reduced pattern maps of the
inverters in the Hierarchy View, namely, scatter plots with
weather clustering encoded colors and the corresponding
contour maps of normal point distribution. The x and y axes
settings are also consistent, with the difference being that the
Pattern View’s pattern map only displays all points of the
corresponding string, not all points under the entire inverter.
Additionally, to further highlight the anomalous patterns
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present in the string, points identified as anomalies by the
model are coded as stars in shape and are larger than normal
points.

The toolbar on the right provides a related mapping
function to help interpret the model results. The first button
resets the layout to its default state, while the second button
is a lasso tool that, when clicked, allows users to select
points within a specific area of the dimensionality-reduced
pattern map. Points at the same time on both sides will
be highlighted simultaneously. Hovering the mouse over an
individual point displays detailed attributes of that point,
such as time and anomaly value, and the corresponding time
segment in the line graph will also be highlighted. This
design facilitates providing users with the means to analyze
and unearth potential associations between the anomalous
patterns and original current data, offering a reasonable
interpretation of the model recognition results.

5.5. Analysis View

The Analysis View (Fig. 4 E) is used to analyze the
causes of anomalous patterns in strings and provides a clear
and concise annotation interface for obtaining labeled data
for downstream complex tasks such as root cause diagnosis
(R2, R5).

In the left part of the Analysis View (Fig. 4 El), the
statistical characteristic indicators of the analysis string and
the reference string are displayed. These indicators provide
detailed explanations for the causes of anomalous patterns
within the strings. To rationally interpret these anomalous
patterns, three important metrics for result analysis have
been designed and introduced: Normal Rate (R,,), Relative
Power Generation Rate (R, ,,), and Irradiance Correlation
Coefficient (Cy,,.).

e Normal Rate represents the proportion of normal
points in the dimensionality-reduced pattern map of
the string.

e Relative Power Generation Rate is defined as the
average ratio of the daily power generation P of a
string .S relative to the best-performing string S,
under the same inverter on the same day, as seen in
eq. (3).

e Irradiance Correlation Coefficient is the Pearson
coefficient (Pearson, 1895) between the time-series
current data I and irradiance data R of a string,
with a range between [—1,1]. For a normal string
S, the current data I is typically proportional to the
irradiance data R. Negative values should be set to 0.
Therefore, the definition of the irradiance correlation
coefficient is given by eq. (4).

This design ensures that all metrics have a uniform range
[0,1] and the same directionality; that is, the closer an
indicator is to 1, the more normal the string is considered,
and vice versa. This helps enhance the visual expressiveness
of these metrics when mapped to visual forms.
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Figure 6: Radar chart visualization design for string metrics.
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To enhance the clarity and intuitiveness of the metrics,
we use a radar chart for visualization, as shown in Fig. 6.
Since there are three metrics involved, the background shape
of the radar chart is a triangle. The space is divided into
four equal parts in alternating gray and white patterns to
facilitate a rough visual estimation of the indicator values.
The center point represents a value of 0, while the outer
vertices represent a value of 1. The smaller the triangular
radar area formed by the metrics, the more anomalous the
corresponding string is considered, allowing users to quickly
analyze the potential causes of string anomalies visually.
The radar charts are arranged in a 2 X 3 format, with the
top row representing the analysis string and the bottom row
representing the reference string from the Pattern View. Each
row contains three columns, representing the metrics for
low, , and irradiance clusters, using the same
clustering color codes as the dimensionality-reduced pattern
maps in section 5.5. When users hover the mouse over the
boundary lines of an area, further numeric information for
each feature is displayed.

The right section of the Analysis View (Fig. 4 E2) is
used for data annotation of strings, correcting any erroneous
results identified by the model to facilitate subsequent itera-
tive optimizations. The annotation includes four parts: String
ID, Anomaly Label, Reasoning, and Comment. String ID
specifies the number of the string being annotated. Anomaly
Label indicates whether an anomaly exists in the string, with
the initial value being the result identified by the model,
which users can modify if the analysis results do not match
the actual situation. Reasoning is a multiple-choice section
that explores possible causes of string inefficiency based on
time-series current data. A single string may have multiple
causes. Based on statistical analysis of the dataset and in-
depth discussions with photovoltaic experts, we propose four
possible reasons for string inefficiency:
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1. Zero Current. The string has a continuous zero cur-
rent for an extended period, such as a day or a week,
despite adequate irradiation.

2. Dust Accumulation or Shading. The string is ob-
structed by dust accumulation or objects like plants
and shadows, causing consistently low power genera-
tion that is minimally affected by weather conditions
and does not change with weather variations in ex-
treme cases.

3. Internal Faults. Some components within the string
have faults like short circuits, fractures, or hot spots,
leading to consistently low power generation, but the
power output proportionally decreases in correlation
with weather changes.

4. Dual Connection per Port. Due to engineering rea-
sons, some inverters have two strings connected to
a single port, resulting in the string’s current being
generally half that of a normal string.

Lastly, Comment is for notes on the analysis of the string,
which can be used for training downstream expert large
models. After filling out the form, clicking the “Label”
button completes the annotation task for a string. Finally,
clicking the "Export" button in the system will obtain the
annotated results of the PV string dataset.

6. Case Study

We designed a series of experiments using the PVeSight
system based on real operational data from a PV power
station to explore and analyze inefficient strings within the
station. The aim is to uncover potential relationships be-
tween anomalous patterns and influencing factors in the data,
and to discuss the causes and differences of the anomalies in
detail.

6.1. Exploring the inefficiency of PV strings

After the system has loaded the power station dataset,
we first analyze the Global View to obtain the anomaly
detection model’s results for identifying the inefficient states
of strings across the entire PV power station. The distri-
bution of string anomaly values displayed in the histogram
shows that most strings have anomaly values around 0.1,
while the anomaly discrimination threshold automatically
calculated by the model based on statistical methods is 0.20
(Fig. 7 Al). Observing the position of the red threshold line
in the histogram confirms that the discrimination threshold
reasonably differentiates the strings’ anomalies. Next, we
explore the physical distribution of anomalous strings using
a treemap. Referring to the scale where color correlates
with the degree of string anomalies, darker rectangle colors
indicate more anomalous box transformers. Comparisons
reveal that box transformers BT002, BT004, and BTO005
exhibit more significant anomalies. Clicking to enter the
next level, it is found that inverters BT002-1009 and BT002-
1012, inverter BT004-1004, and inverter BT005-1017 show
anomalies. To further explore the current conditions of
strings under severely anomalous inverters, selecting the
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Figure 7: Exploring and identifying inefficient PV strings within
the power station.

darkest-colored inverter (Fig. 7 A2), BT005-1017, displays
the real-time current of all strings from PV1 to PV18 in
the Top View. Sorting the strings by descending anomaly
value R, (Fig. 7 A3), it is found that two strings, PV18
and PV13, have R, values greater than the discrimination
threshold of 0.2, with respective anomaly values of 1 and
0.26. Examining the real-time current time-series graphs
reveals that PV 18 has zero current while PV13 shows signif-
icantly reduced overall current magnitude, clearly indicating
anomalies (Fig. 7 A4). This demonstrates the model’s ability
to identify inefficient strings within the dataset.

6.2. Mining string dimension reduction patterns

The anomaly detection model for strings proposed in
this work is based on dimensionality-reduced pattern maps
of strings and implemented through a hierarchical training
approach. Due to the black-box nature of such methods,
the results of string identification should be made more
interpretable. We selected the inverter BT005-I017 in the
Global View as the object of analysis. The Hierarchy View
displays the combined dimensionality-reduced pattern maps
of all strings within this inverter, categorizing the points
in the combined pattern map into three classes based on
their color coding: high, medium, and low irradiance, along
with their respective normal cluster distributions (Fig. 8 A).
Observing the boundaries of these distributions, the anomaly
detection model fitted for this inverter effectively segments
and combines strings under the three environmental con-
ditions in two-dimensional space. Vertically, from bottom
to top, the strings are arranged as low, medium, and high
irradiance, with some overlap at the boundaries of each
section, particularly between high and medium irradiance
where the overlap is significant (Fig. 8 A1). Analyzing the ar-
rangement of dimensionality-reduced points, the higher the
points in the space, the greater the irradiance and the better
the power generation performance, meaning the height in
the space is directly proportional to both the irradiance level
and the string’s daily performance (Fig. 8 A2). The same
observations hold for different inverters. Additionally, the
overlap in string BT005-1017 suggests errors at the model’s
weather clustering boundaries, with more overlap between
high and medium irradiance. This is likely because low
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Figure 8: Analyzing the dimensionality-reduced pattern map from the inverter and string levels. (A) Investigation of the spatial
distribution at the inverter level. (B) Analysis of differences between normal and abnormal string patterns, compared with the

time-series graph.

irradiance fluctuates less than medium irradiance, making
the distinction clearer.

We further explored and analyzed each string under
the inverter in the Top View (Fig. 8 B), sorting them in
descending order by the anomaly value R,. The two strings
with the lowest R, values, PV16 (R, = 0) and PV7 (R, =
0), were selected as the analysis string (left side) and the
reference string (right side), respectively. Our observation of
the distribution of points under the three weather conditions
in the dimensionality-reduced pattern map for normal PV
strings also shows that the height in the dimensionality-
reduced space is directly proportional to the string current
(Fig. 8 B1). Star-shaped data points identified as anomalies
by the model deviate significantly from their data clusters
in spatial distance, indirectly validating the reliability of the
anomaly detection model. Changing the analysis string to
PV18 under the inverter, which has the highest R, the time-
series current graph of this string shows nearly zero current,
with R, = 1 indicating that the model considers the daily
current performance of the string to be anomalous every day
(Fig. 8 B2). Moreover, in the dimensionality-reduced pattern
map, all points are nearly gathered in the same local area,
which aligns with the actual situation.

When we switched the analysis string to another anoma-
lous string, PV13 (R, = 0.26), and comparing the time-
series current graphs of PV13 and PV7 in the Pattern View,
we found that PV13 consistently recorded lower current than
the normal string PV7 at certain time points, indicating over-
all lower power generation performance (Fig. 8 B3). In the
dimensionality-reduced pattern map for PV13, we observed
that the red section (high irradiance) and the green section
(medium irradiance) shifted downward compared to the
reference string on the right. For example, high irradiance
points appeared in the medium range and medium irradiance
points appeared in the low range. Since spatial height is
directly proportional to string current, this indicates that
the string’s power generation performance under high and
medium irradiance conditions is lower than normal, while it
remains normal under low irradiance conditions. Mapping
this back to the time-series current chart for verification
confirmed that the results align with our conclusions.

6.3. Comparative analysis of PV string anomalies
Root cause analysis helps maintenance personnel verify
the correctness and repair faults after identifying anomalous
PV strings. Different types of anomalies require specific
handling methods. For example, removing obstructions for
grass or shrub blockages, cleaning solar panels for dust
accumulation, and replacing panels for short or open circuits
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Figure 9: Analysis and annotation results of different types of
anomaly strings.

require particular consideration. To cover as many anomalies
as possible and verify the accuracy of the anomaly detection
model, we sorted the PV strings by the global anomaly
value R, in descending order, selected strings with high
anomaly values combined with time-series electrical data for
detailed analysis, and made simple annotations (Fig. 9). The
following are the specifics of various anomalies identified
during the analysis.

Long-Term Zero Current. This anomaly occurs when
the current remains zero or near-zero for several days or
more, despite sufficient environmental factors such as ir-
radiance (Fig. 9 A). In the Pattern View’s dimensionality-
reduced pattern map, this anomaly appears as data points
clustered within a narrow range on both sides of the space.
Correspondingly, the radar chart in the Analysis View shows
a point for each of the three weather conditions, with all
metrics at zero. When annotating, select the “Long-Term
Zero Current” option.

Dust Accumulation or Shading. Analyzing this type
of anomaly through the radar chart on the left side of the
Analysis View, we find that these inefficient PV strings have
a reduced irradiance correlation coefficient. For example,
BT002-1008-PV2’s coefficients are 0.94, 0.75, and 0.73 un-
der low, medium, and high irradiance conditions (Fig. 9 B),
respectively, indicating a reduced impact of irradiance on
the string’s real-time current due to obstacles like vegeta-
tion, buildings, or accumulation of dust and droppings. The
greater the irradiance, the more pronounced the effect, but

there remains a roughly proportional relationship overall.
This anomaly appears in the dimensionality-reduced pattern
map as a significant downward shift of points in medium
and high irradiance, identified by the model as anomalies.
Additionally, the relative power generation rates are 0.47,
0.33, and 0.2, indicating that the string’s current is lower than
normal, particularly under higher irradiance. The time-series
current graphs in the Pattern View confirm an overall reduc-
tion in current magnitude, with greater deviation under high
irradiance. When annotating, select the "Dust Accumulation
or Shading" option.

Internal Faults. Unlike the second type, this anomaly
arises from issues such as diode blowouts, surface frac-
tures, or hot spots, causing PV strings to malfunction. This
anomaly not only reduces the string’s current magnitude but
also weakens the correlation between current and irradiance.
For BT001-1008-PV 1, the irradiance correlation coefficients
are 0.95, 0.73, and 0.41, decreasing as irradiance increases
(Fig. 9 C). Internal defects prevent some components from
working properly even under sunlight, reducing the im-
pact of irradiance on the string’s current, especially at high
irradiance. Similarly, the relative power generation rates
drop to 0.58, 0.45, and 0.33. In the dimensionality-reduced
pattern map, points under medium and high irradiance shift
downward and are marked as anomalies. In contrast to cases
where time-series current values approach a uniformly low
level regardless of irradiance, the current in strings with
internal defects decreases proportionally, as these defects
effectively reduce the number of functioning components.
When annotating, select the “Internal Faults” option.

Dual Connection per Port. This anomaly is relatively
special and was identified during our field research. It occurs
when strings are installed in a constrained real environment,
causing a single inverter port to connect two strings. PV
strings with dual connections exhibit a 2:1 ratio in time-
series current compared to normal strings, and their points in
the dimensionality-reduced pattern map shift upwards. Ad-
ditionally, the relative power generation rates in the Pattern
View for dual-connected strings are close to 1, while those
for normal strings are around 0.5. When annotating this data,
select the "Dual Connection per Port" option.

7. Evaluation

To accurately evaluate the feasibility and usability of our
proposed inefficient PV string recognition method and the
visual analysis system PVeSight, we conduct validation from
two aspects: model performance and system application.

7.1. Model Performance

The accuracy of the inefficient PV string recognition
model is a key indicator for evaluating its effectiveness.
Since our proposed method utilizes an unsupervised learning
model and the dataset does not contain ground truth labels,
verifying the accuracy of the model’s output can only be
achieved through on-site manual inspection. To address this
challenge, we designed a model performance evaluation
scheme based on the Top K strategy.
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Table 1
Model performance evaluation results: Comparison of Top K
scores for five PV power stations.

Table 2
Experimental results of users diagnosing various types of
inefficient PV strings using the PVeSight system

Station Top 25 Top 50 Top 100 Top 200 Anomaly Type Proportion | Accuracy

A 0.85 0.80 0.77 0.72 Long-Term Zero Current 20% 100%

B 0.70 0.64 0.61 0.67 Dust Accumulation or Shading 12% 83.3%

C 0.75 0.72 0.68 0.65 Internal Faults 30% 90.0%

D 0.60 0.60 0.62 0.595 Dual Connection per Port 12% 91.7%

E 0.65 0.60 0.51 0.555 Long-Term Zero Current, 7% 85.7%
(mean) 0.710 0.672 0.638 0.638 Internal Faults

Dust Accumulation or Shading, 13% 69.2%
Internal Faults

To effectively validate the accuracy and generalizability Dual Connection per Port, 6% 66.7%
of the proposed inefficient PV string identification model, Internal Faults

we collected real-time operational data from PV power sta-
tions located in five different geographic regions, including
mountainous areas, plains, and tidal flats, for evaluation
experiments. These power stations are labeled as A, B, C,
D, and E. Following the same methodology described in
section 4, we constructed dimension-reduction pattern maps
using real-time electrical data from PV strings along with
site environmental information. Based on these maps, inde-
pendent models were trained to detect inefficient strings in
each power station dataset. For this unsupervised inefficient
string identification model, the experiment introduced a Top
K evaluation method. The identified anomalies R, were
ranked in descending order, and the top K strings with the
highest anomaly scores were selected. The actual inefficient
string ratio among these selected strings was then verified
through on-site inspection, serving as a quantitative measure
of the model’s performance.

To ensure the rationality of the experimental results,
each power station provided data from 2000 PV strings
for testing, and four evaluation metrics were set: Top 25,
Top 50, Top 100, and Top 200. The overall results of the
model performance evaluation experiment are presented in
Table 1. The results indicate that the average Top K scores
across all power stations decrease as K increases, with
values of 0.71, 0.672, 0.638, and 0.638 for K=25, 50, 100,
and 200, respectively. Although the recognition accuracy
declines with increasing K, it remains consistently above 0.6,
demonstrating that the proposed method maintains strong
performance even in the absence of labeled data. Among the
power stations, Station A achieved the highest Top K scores
of 0.85, 0.80, 0.77, and 0.72, respectively, while Station E
exhibited relatively poorer performance, with Top K scores
of 0.65, 0.60, 0.51, and 0.555. A possible reason for this
discrepancy is that Station A is located in a plain area, where
external environmental factors have minimal impact, leading
to higher-quality sensor data collection. In contrast, Station
E is situated in an intertidal zone, where humidity and dust
accumulation may degrade sensor data quality. Given these
observations, incorporating more environmental data could
enable more sophisticated modeling of environmental fac-
tors and improvements in the structure of the identification
model, thereby further enhancing the performance of the
low-efficiency string identification model.

7.2. System Application

In this work, we developed an interactive visual analysis
system, PVeSight, for inefficient PV string detection. This
system integrates visual perception with expert knowledge
to diagnose the causes of inefficiency and optimize model
performance. Specifically, the system first utilizes the de-
veloped inefficient PV string recognition model to identify
potential inefficient PV strings. Then, through the visual
analysis system, experts analyze whether the identified PV
strings are indeed inefficient and determine possible causes
based on domain knowledge. Finally, the corrected results
and labeled data are fed back into the model to further
enhance its performance.

To validate the effectiveness of the PVeSight system, we
selected as many different types of inefficient PV strings as
possible from the power station dataset. These included four
fundamental types—Ilong-term zero current, dust accumula-
tion or shading, internal defects, and single-port connection
of two strings—as well as three composite types formed
by combining two fundamental types, resulting in a total
of 100 PV strings as evaluation samples. We then invited
five users to conduct an evaluation experiment using our
system. During the experiment, users were asked to explore
and analyze inefficient PV strings through the visual analysis
system, utilizing the annotation function within the analysis
view to determine whether a PV string was inefficient and to
identify the potential causes of inefficiency. We recorded the
average diagnostic accuracy across all users for each type of
inefficiency, and the final results are presented in Table 2.
The results indicate that, with the assistance of PVeSight,
the recognition accuracy of different types of inefficient
PV strings improved to a certain extent, demonstrating the
practical value of integrating the model with an interac-
tive system. However, there remain challenges in accurately
identifying composite-type inefficient PV strings, highlight-
ing the need for more effective interactive visualizations to
better distinguish composite types from fundamental types.

In addition, we invited three experts to test our system.
During the testing process, we provided each expert with
a detailed introduction to all system functionalities and
usage procedures. They were then asked to complete two
tasks using PVeSight: free exploration and specified PV
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string analysis. After the test, we conducted semi-structured
interviews with each expert to collect feedback and sug-
gestions for improvement. First, the experts affirmed the
effectiveness of the proposed hierarchical anomaly detection
method. By grouping data based on the three-tier structure
of transformer-inverter-PV string in photovoltaic power sta-
tions, the method eliminates deviations in PV string data
caused by inherent factors. Additionally, the introduction of
dimensionality reduction pattern maps and irradiance clus-
tering labels reduced computational costs while enhancing
both the accuracy and interpretability of anomaly detection.
From a system design perspective, the Global View, utiliz-
ing a rectangular treemap, effectively visualizes the overall
status of the power station. This design enables users to
quickly identify potential abnormal patterns and systemat-
ically analyze them step by step. The dimensionality reduc-
tion pattern map, with color encoding based on clustering
labels, effectively reveals the influence of irradiance factors
on PV string power generation performance in the reduced-
dimensional space. This transformation converts temporal
shape anomalies into spatial distance anomalies, leveraging
human visual perception capabilities for anomaly detection.
Moreover, the inclusion of fitted normal PV string contours
enhances the expressiveness of the dimensionality reduction
pattern map, allowing users to intuitively assess the degree
of PV string degradation.

To further improve the system, experts provided the
following modification suggestions: (1) Introduce actual ge-
ographic information in the Global View when display-
ing the overall situation of the station, facilitating users in
discovering interesting patterns. (2) Enhance the accuracy
and interpretability of the dimensionality-reduced pattern
maps. The proposed method relies on the accuracy of the
dimensionality reduction method, and the system lacks a
mechanism for assessing the correctness of dimensionality
reduction. (3) The system should integrate existing expert
knowledge databases to automatically provide diagnostic
results after model recognition of anomalous strings, intro-
ducing domain knowledge to enhance the system’s analytical
and interpretive capabilities.

8. Discussion

We propose a PV string anomaly detection system that
demonstrates good performance in detection and analysis.
The system features low computational costs and a straight-
forward operational process, effectively helping mainte-
nance personnel identify and analyze inefficient strings.
However, the system has certain limitations, which we plan
to address in future work.

The system’s limitations include: (1) Insufficient di-
versity of the experimental dataset.PV power stations
vary across different types, such as flat, mountainous, and
tidal flat stations, with each type affected differently by
environmental factors. Future work will need to verify the
applicability of the detection methods on different types of
stations to enhance the method’s general performance. (2)

Lack of automatic explanation capability. Although the
system uses dimensionality-reduced pattern maps and radar
charts to interpret and analyze the time-series current results,
users must still analyze and check them one by one. We can
improve detection efficiency and enhance the accuracy and
interpretability of user analyses by incorporating automatic
diagnostic capabilities into the system using the existing
expert knowledge base.

9. Conclusion

This study summarizes the domain requirements for
detecting and analyzing anomalous PV strings through long-
term collaboration with experts in the PV field. Based on
real-world needs, we propose a hierarchical anomaly de-
tection method and an accompanying visual analysis sys-
tem, PVeSight. Dimensionality reduction algorithms are
employed to transform temporal anomalies in PV string data
into spatial anomalies, while environmental information is
incorporated to hierarchically build the anomaly detection
model. Without labeled data, good recognition results were
achieved using only electrical and irradiance data, combined
with a method for calculating the degradation rate of anoma-
lous strings. We designed five views to display the model’s
detection results and analyze the causes of anomalies in each
string, with a labeling feature to support data for downstream
complex tasks. Finally, the usability of the system was eval-
uated through a case study and expert interviews. In future
work, we will further evaluate and validate the method and
system using more power station data.
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